

Lithium biosorption by *Spirulina platensis* biomass

Nikita Yushin¹

¹Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia

Inga Zinicovscaia^{1,2,3}, Pantelica A², Apostol A²

¹Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia

²Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest - Magurele, Romania.

³The Institute of Chemistry, 3, Academiei Str., 2028 Chisinau, R. Moldova

Applications of lithium

Traditional techniques used for lithium removal

- Solvent extraction
- Ion-exchange
- Precipitation
- Membrane processes
- Adsorption

Object of study

Arthrospira (Spirulina) platensis is a filamentous plankton cyanobacteria (gramnegative), or a multicellular helical filamentous alga. biomass purchased from "Biosolar MSU" company was dried in an oven at 80°C for 24 h. Then the biomass was homogenized at 600 rpm for 10 min.

The scheme of the experiment

Proton Induced Gamma Emission (PIGE)

Elements detectable by PIGE method

Proton Induced Gamma Emission (PIGE)

Sample support for proton beam irradiation

Proton Induced Gamma Emission (PIGE)

Sample support PIGE spectrum of Li-loaded Spirulina platensis biomass

Effect of pH value on biosorption

Experimental conditions: T 20°C; C_i 10 mg/L; sorbent dosage 10 g/L; adsorption time 2 h

Effect of time on biosorption

Experimental conditions: T 20°C; C_i 10 mg/L; pH 11; sorbent dosage 10 g/L

Biosorption kinetics

The pseudo-second order model parameters

		Pseudo-second-order				
		C _e , mg/L	q _{e (exp)} , mg/g	q _{e (cal)} , mg/g	K _b , g/mg∙min	R ²
		10	0.87	0.9	1.97	0,99
90 80 70 60 50 50 40 - 30 - 20 - 10 - - - - - - - - - - - - -			·			
0	10 20	30 40 t [min]	50 60	_		
The kinetie	pseudo-s c study o on A	econd order j f lithium bios . <i>platensis</i>	plot of sorption			

Biosorption equilibrium modeling

Isotherm parameters for the biosorption of lithium ions on A. platensis biomass

Langmuii	isotherm	Freundlich isotherm		
R ²	0,99	R ²	0.97	
Q _{max}	1.75 mg/g	K	0.1	
b	0.015 L/mg	n	1.78	

Conclusions

- *A. platensis* biomass can be applied as biosorbent for lithium removal from batch solutions.
- The maximum biosorption capacity of lithium 1.75 mg/g was achieved at pH 11.0 and sorbent dosage 10 g/L.
- Langmuir isotherm model and pseudo-second-order kinetic model described better the biosorption process under consideration.

Thank you for attention!