Investigation of (n,a) reaction excitation function for zinc isotopes.

Khromyleva T.A., <u>Bondarenko I.P.</u>, Gurbich A.F., PrusachenkoP.S., Sergachev A.I., Khryachkov V.A.

IPPE, Obninsk

Current state of experimental data and evaluations

ISINN-27, Dubna, 2019

Specific of particles registration from target placed on cathode and spaced

- $1 \text{cathode born } \alpha \text{-particles}$
- 2 false cathode born α -particles
- 3 gas born α -particles

- 1 target born particles
- 2 false target born particles
- 3 cathode particles
- 4 false cathode particles
- 5 gas born particles

ISINN-27, Dubna, 2019

Block diagram of the detector and electronics

CSPA – charge sensitive preamplifier;

- SA spectrometric amplifier;
- D discriminator;
- WFD waveforms digitizer;
- FA fast amplifier

Information from signals of ionization chamber

- Anode pulse height P_A
- Cathode pulse height P_C
- Anode pulse start time T_{SA}
- Cathode pulse start time T_{SC}
- Anode pulse saturation moment T_{EA}
- Drift time $T_d = (T_{EA} T_{SC})$
- Anode pulse rise time $T_r = (T_{EA} T_{SA})$
- Maximum distance from anode to beginning (end) of the track $X=(D-T_d*v_e)$
- Length of registered particle track projection to chamber axis $(R_x = T_r * v_e)$

Direct Q-value determination of investigating (n,α) reaction

Excitation levels and its input in spectrum

α -particles spectra for different neutron energies

ISINN-27, Dubna, 2019

Events selection by drift time parameter

Each drift time corresponds to particular element (place) in chamber. Signal analysis by this factor allows to suppress background by separating investigating events on target from events on other elements of chamber.

Events selection by signal rise time parameter

Background suppression

Background suppression in α -particles emission angle for different energies

Tandetron accelerator

	The main parameters	Accelerator IG-1	New accelerator Tandetron
	Neutrons energy	Max 7,2 MeV	Max 9 MeV
	Value of current	5 - 7 μΑ	max 50 μA - H ⁺ max 20 μA - D ⁺
	Accelerated ions	H+, D+	from H ⁺ to gold ions
	Impulse beams	_	It is possible to obtain impulse beams H ^{+,} D ⁺ and He ²⁺ .The average pulse width is 1 ns.

Neutron spectra from $D(d,n)^{3}$ He for main neutron energies.

Experimental determination of (n, α) reaction cross-section

ISINN-27, Dubna, 2019

Thank you for your attention