$(n, x\gamma)$ reaction cross-section measurement on Sb and Cr

N.A. Fedorov, T.Yu. Tretyakova, Yu.N. Kopatch, D.K. Kolyadko, D.N. Grozdanov, I.N. Ruskov, F.A. Alyev, K. Hramco and TANGRA collaboration

ISINN-2019

The Idea of the "tagged" neutron method

- $d + t \rightarrow \alpha + n + 17.6 \text{MeV}$
- In the center-of-momentum frame n and α fly in opposit directions.
- For registration of the α -particles 64-pixel silicon detector is used. The dimensions of a single pixel are 6×6 mm. The α -particle registration allows one to determine the directon of neutron's momentum.

- Sample: $4 \times 4 \times 14$ aluminum foil box filled by antimony or Cr_2O_3
- Sample was placed at 28cm from ING-27
- Distance form sample to detector: 5 cm
- 2 X-strips were used in this experiment

Events separation (inside and outside the sample)

Events inside and outside irradiated sample cannot be distinguished using ToF method only. We need second criteria.

Events separation (inside and outside the sample)

Coincedence/Anticoincedence criteria

We use the fact that events generated in surrounding object forms substrate (red area on ToF) have almost flat ToF distribution, therefore Peak/Substrate ratio for peaks formed by that "background" events will be same inside coincedence and anticoincedence

Features of the tagged beam distribution (Geant4 calculation)

Cross-section calculation

- We assume that sample is thick
- $dN_{\gamma} = \epsilon N_n(x)\sigma_{\gamma} \frac{\rho N_A}{A} dx$, where ϵ takes into account absorption of γ -quanta in sample and efficincy of the γ -detector, $N_n(x)$ describes dependence of quantity of neutrons on the path inside the sample. Then $\sigma_{\gamma} = \frac{N_{\gamma}A}{\epsilon \rho N_A \int_0^\infty N_n(x) dx}$
- Due to complex spatial distribution of the tagged beams $\int_0^\infty N_n(x) dx$ and ϵ were calculated using Geant4

Reaction	σ (Talys),mb
${}^{52}Cr(n,n'){}^{52}Cr$	860
${}^{52}Cr(n,2n){}^{51}Cr$	380
${}^{52}Cr(n,p){}^{52}V$	77
${}^{52}Cr(n,a){}^{48}Ti$	0.00718
52 Cr(n,np) 51 V	42
121 Sb(n,n') 121 Sb	460
121 Sb(n,2n) 120 Sb	1480
121 Sb(n,p) 121 Sn	16.2
121 Sb(n,a) 117 In	0.0217
121 Sb(n,np) 120 Sn	4.75
123 Sb(n,n') 123 Sb	380
123 Sb(n,2n) 122 Sb	1580
123 Sb(n,p) 123 Sn	114
123 Sb(n,a) 119 In	0.0018

- We cannot register secondary particles with HPGe only
- We have to use external information to identify differnt γ -lines: list of levels (from ENSDF) and cross-section estimation (articles or Talys)
- We assign reactions and γ -transitions with highest cross-sections and closest energies to the observed γ -line

Cross-sections and yeilds of gamma-ray emission for Cr (Very preliminary)

Reaction	E,keV	Yeild,%	σ ,mb	σ ,mb[1]	σ (Talys),mb
${}^{52}Cr(n,n')$	649	16.9±1.9	156±35	70±4	33
${}^{52}Cr(n,n')$	706	6.9±0.6	75±12.4	42±3	42
${}^{52}Cr(n,n')$	745	11.5±0.7	104.3±11.4	71±4	64
${}^{52}Cr(n,n')$	936	30.8±0.6	276.2±11.5	237±2	238
${}^{52}Cr(n,n')$	1247	17.7±2.5	163.5±46.5	39±4	22
${}^{52}Cr(n,n')$	1335	25.9±0.6	230±11.2	205±8	163.8
${}^{52}Cr(n,n')$	1435	100±0.9	893.4±16.8	783 ± 30	768.9

1. S. Simakov, A. Pavlik, A. Vonach μ S. Hlavac, Status of experimental and evaluated discrete γ -ray production at En=14.5 MeV, Vienna: IAEA NUCLEAR DATA SECTION, 1998.

Cross-sections and yeilds of gamma-ray emission for Sb (Preliminary)

Normalization on the 946.9keV(9/2⁺) \rightarrow 37.1keV(7/2⁺) (E_{γ} =910keV)

Most intensive lines (Sb, Yeild>70%, Preliminary)

Reaction	E,keV	Yeild,%	Yeild[2],%	σ ,mb	σ (Talys),mb
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	115	107.4 ± 8.4		24±1.9	104.7
¹²¹ Sb(n,2n)	125	139.8±12.6		26.3±2.3	
¹²¹ Sb(n,2n)	158	155.8±8.6		31.9±1.7	205
¹²³ Sb(n,n')	160	156±9.3	360	34.9±2.1	66
¹²¹ Sb(n,2n)	165	235.3±7.6		49±1.4	75
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	232	156.5±5.7		31.5±1.1	24.26
¹²¹ Sb(n,2n)	252	73±6.4		$14.2{\pm}1.2$	52.2
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	255	15.2±8.2		3.4±1.8	
¹²¹ Sb(n,n')	284	84.4±6		16.8±1.1	6.7
¹²¹ Sb(n,n)	289	83.6±5.7		16.8±1.1	2.052
¹²¹ Sb(n,n')	375	109.1±4.1	31	21.5±0.8	95.7
¹²³ Sb(n,n'), ¹²³ Sb(n,2n')	381	43.9±3.8		9.8±0.9	11.7
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	439	99.9±3.8	16	19.6±0.7	
¹²¹ Sb(n,2n)	445	91.3±3.8		18±0.7	
¹²¹ Sb(n,2n)	579	109±6.7		19±1.2	
¹²¹ Sb(n,2n)	581	82.8±4.2		18.5±0.9	
¹²¹ Sb(n,n')	910	100±4	100	19.9±0.8	123.7
¹²¹ Sb(n,n')	999	121.4±3.9	77	24±0.8	28.52
123Sb(n,n')	1029	94.9±4.3	101	$18.9 {\pm} 0.8$	
¹²³ Sb(n,n')	1089	88.2±4.1	72	17.7±0.8	46.9
¹²¹ Sb(n,n'), ¹²³ Sb(n,n')	1102	110.7±5	59	22±0.9	59.8
¹²¹ Sb(n,n'), ¹²³ Sb(n,p)	1108	74.5±4.9	39	14.6±0.9	9.69

2. Atlas of gamma-ray spectra from the inelastic scattering of reactor fast neutrons, Moscow, Atomizdat 1978

- The experiment to study $(n, x\gamma)$ reactions on Cr and Sb was carried out
- The first version of cross-section extraction procedure was developed. This procedure takes into account:
 - Spatial distribution of neutron beams
 - **(2)** Thickness of the sample \rightarrow n, γ absorption
 - **③** Efficiency of the γ -ray registration as function of emission point distribution
- Cross-sections for $(n, x\gamma)$ reactions were measured on TANGRA setup for the first time
- Disagreement with previous experiments is found, check of data processing procedure is needed

$N_n(x)$

Reaction	E,keV	Yeild,%	Yeild[1],%	CrossSection,mb	Talys,mb
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	115	107.4 ± 8.4		24±1.9	104.7
¹²¹ Sb(n,2n)	125	139.8±12.6		26.3±2.3	
¹²³ Sb(n,2n)	148	72.4±7		16.2±1.6	79.3
¹²¹ Sb(n,2n)	158	155.8±8.6		31.9±1.7	205
¹²³ Sb(n,n')	160	156±9.3	360	34.9±2.1	66
¹²¹ Sb(n,2n)	165	235.3±7.6		49±1.4	75
¹²¹ Sb(n,2n)	179	47±6.2		9.8±1.1	
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	184	56.9±6		11.7±1.1	
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	232	156.5±5.7		31.5±1.1	24.26
¹²¹ Sb(n,2n)	252	73±6.4		14.2±1.2	52.2
¹²¹ Sb(n,2n), ¹²³ Sb(n,2n)	255	15.2 ± 8.2		3.4±1.8	
¹²¹ Sb(n,n')	284	84.4±6		16.8±1.1	6.7
¹²¹ Sb(n,n)	289	83.6±5.7		16.8±1.1	2.052
¹²¹ Sb(n,n')	328	49.2±5.9	6	9.7±1.1	
¹²³ Sb(n,2n)	333	55.3±5.8		10.8±1.1	
¹²¹ Sb(n,n')	375	109.1±4.1	31	21.5±0.8	95.7
¹²³ Sb(n,n'), ¹²³ Sb(n,2n')	381	43.9±3.8		9.8±0.9	11.7

Reaction	E,keV	Yeild,%	Yeild[1],%	CrossSection,mb	Talys,mb
¹²¹ Sb(n,n')	392	56.6±4	13	11.1±0.7	12.7
¹²³ Sb(n,2n)	421	43.9±3.9		8.7±0.7	
121 Sb(n,2n), 123 Sb(n,2n)	439	99.9±3.8	16	19.6±0.7	
¹²¹ Sb(n,2n)	445	91.3±3.8		18 ± 0.7	
¹²¹ Sb(n,2n)	482	30.3±3.9		$5.9{\pm}0.7$	0.25
¹²¹ Sb(n,2n)	579	109±6.7		19±1.2	
¹²¹ Sb(n,2n)	581	82.8±4.2		18.5±0.9	
¹²¹ Sb(n,2n)	628	46.4±4.2	17	9.1±0.8	
¹²¹ Sb(n,n')	910	100 ± 4	100	19.9±0.8	123.7
¹²¹ Sb(n,n')	999	121.4±3.9	77	$24{\pm}0.8$	28.52
¹²¹ Sb(n,n')	1023	52.7±4	34	$10.4{\pm}0.8$	20.9
¹²³ Sb(n,n')	1029	94.9±4.3	101	18.9 ± 0.8	
¹²³ Sb(n,n')	1089	88.2±4.1	72	17.7±0.8	46.9
¹²¹ Sb(n,n'), ¹²³ Sb(n,n')	1102	110.7±5	59	22 ± 0.9	59.8
¹²¹ Sb(n,n'), ¹²³ Sb(n,p)	1108	74.5±4.9	39	14.6±0.9	9.69
¹²¹ Sb(n,n')	1145	43.8±3.5	31	$8.8 {\pm} 0.7$	22.96
¹²³ Sb(n,n')	1338	21.5±3.5	33	4.3±0.7	17.6

