

The v-BALL PROJECT at IPN ORSAY

N. Jovancevic (IPNO)
M. Lebois (IPNO)
J. Wilson (IPNO)
D. Thisse (IPNO)
G. Charles (IPNO)
R. Canavan (Univ. Surrey)
M. Rudigier (Univ. Surrey)
D. Etasse (LPC Caen)

Outline

- v-ball hybrid spectrometer
- Experimental Campaign

- ²⁵²Cf ionisation chamber + v-ball
- **Neutron induced reaction** γ spectroscopy:
- Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) and ²³²Th(n,f) reactions
- 2. Spectroscopy above the shape isomer in 238 U

Motivation:

- 1. Neutron source with ALTO
- Spectroscopy of the neutron-rich nuclei
- Fission isomers
- 2. High sensitivity fast timing studies to extract information about nuclear moment or deformations

Loan

- Hybrid spectrometer Ge/LaBr
- "FASTER" Digital DAQ
 - 184-200 Independent Channels (106 Ge, 20 LaBr, 58 BGO)
 - 500 Ms/s, 12 effective bits QDC for LaBr3
 - 125 Ms/s, 14 effective bits ADC for HPGe and BGO
- Coupling with neutron source
- Calorimetry
- Efficiency
 - ~ 6.3% for Ge
 - $\sim 0.8\%$ for LaBr

v-ball hybrid spectrometer ALTO facility

Standard Tandem beams

- from H, ³He, ⁴He, ..., ¹⁴C, ... up to ¹²⁷I
- terminal voltage: from < 1 MV up to 14.5 MV
- beam pulsing: pulse width 1 2 ns; repetition rate 200 ns or more
- new ions source installed (800 enA of ⁷Li)

LICORNE

Lithium Inverse Cinematiques ORsay Neutron source

20 LaBr₃ 1.5"x2"

Time Resolution: ~250ps

Energy Resolution (@662 keV): 2,6% Photopeak efficiency (@1.33 MeV): 0.5%

24 Clovers

10 Phasel HPGe

Time Resolution: ~ 13 ns

Energy Resolution (@1.33MeV): 2.8 keV Photopeak efficiency (@1.33MeV): 6.3%

The measured timing performances

Experimental Campaign (November 2017 – July 2018)

Heavy Ion Reaction γ spectroscopy:

- Half-life measurement and isomer spectroscopy in the neutron rich deformed nucleus ¹⁶⁶Dy
- Electromagnetic transition rates in the nucleus ¹³⁶Ce
- Pinning down the structure of ⁶⁶Ni by 2n- and 2p-Heavy-Ion transfer reactions and g-factor measurement
- A study on the transition between seniority-type and collectivity excitations in the YRAST 4⁺ state of ²⁰⁶Po
- Measurement of the super-allowed branching ratio of ¹⁰C
- Feeding of low-energy structures of different deformations by the GDR decay: the nuBall array coupled to PARIS

Neutron induced reaction γ spectroscopy:

- Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) and ²³²Th(n,f) reactions
- Spectroscopy above the shape isomer in ²³⁸U

Experimental Campaign

Experimental Campaign: tight schedule

3192 hrs of beam time

Including 2856 hrs For 1st semester 2018

18/29	01/05-24/07	Beam Line preparation / Cabling			
36-46	04/09-13/11	nu-ball mounting / BGO gain matching / HPGe preparation			
46	13/11/17	R&D ALTO			
		Commissioning nu-ball			
47	20/11/17	Commissioning nu-ball			
48	27/11/17	N-SI-99			
49	04/12/17	N-SI-106			
4	22/01/18	N-SI-105			
5	29/01/18	N-SI-108			
6	05/02/18				
7	12/02/18		N-SI-109		S.
8	19/02/18		N-SI-109		LICORNE
9	26/02/18		Machine Maintenance	e	
10	05/03/18		Machine Maintenance	e	
11	12/03/18		N-SI-100		
12	19/03/18		N-SI-82		
13	26/03/18		N-SI-82		
14	02/04/18	public holiday			
15	09/04/18		N-SI-109		6
16	16/04/18	N-SI-109		LICORNE	
17	23/04/18	N-SI-109			
18	30/04/18		ARTE	Machine Ma	aintenance
19	07/05/18		Machine Maintenance	e	
20	14/05/18		N-SI-103		<i></i>
21	21/05/18	public holiday	N-SI-1	103	LICORNE
22	28/05/18				second with wetworks the following of function to for
23	04/06/18		N-SI-106		
24	11/06/18	N-SI-107			
25	18/06/18		Final Calibration		
26-30	25/06->26/07	Detector Maintenance / Packing / Shipment to Jyvaskyla			

Experimental Campaign: the full dataset

Experimental Campaign: data processing

Experimental Campaign

²⁵²Cf ionisation chamber + v-ball

Neutron induced reaction γ spectroscopy:

Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) and ²³²Th(n,f) reactions (5 weeks)

Spectroscopy above the shape isomer in ²³⁸U (2 weeks)

\square ²⁵²Cf – spontaneous fission

v-ball calorimetry

v-ball calorimetry

Timing separation

Compton suppression

²⁵²Cf ionisation chamber + v-ball <u>First preliminary results</u>:

- \square ²³⁸U(n,f) and ²³²Th(n,f) reactions with fast neutrons
- Production and study hundreds of neutron-rich nuclei
- □ Synergy between 238 U(n,f) and 232 Th(n,f) data sets

- 1) Lifetime measurements in the 132Sn region
- 2) Shape coexistence investigation beyond N=60 in the strontium isotopes
- 3) Study of fission fragment isotopic yields
- 4) Lifetime measurements around N=90
- 5) YRAST state sudies in the 78Ni region
- 6) Spectroscopy of high-spin multiplets in few-valence-particle nuclei around 132Sn
- 7) Gamma spectroscopy in the north-east region of double magic 78Ni search for neutron radioactivity
- 8) Evolution of the deformation across the yttrium chain in the neutron-rich nuclei around A=100
- 9) Tracking shape evolution beyond N=60 in Sr and Zr isotopes
- High-precision measurement of the quadrupole transition moments in 102Zr
- Development of deformation in the Ce-Ba-Nd isotopic chains
- Nuclear structure studies in preparation for TAS spectroscopy at ALTO
- 13) Shape coexistence around neutron-rich N=60: Spherical vs. well-deformed structures in the Rb isotopes
- 14) Study of shape-coexstence and single-particle states in neutron-rich Kr isotopes
- 15) Fast-timing investigation of single particle and collective states in Te isotopes and other neutronrich nuclei around 132Sn
- Gamma and fast-timing spectroscopy of odd Ge and Se isotopes

²³⁸U(n,f)

2 weeks

²³²Th(n,f)

3 weeks E_{Li}=16.75MeV m= 129 g

Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) and ²³²Th(n,f) reactions

-200

-100

- □ Selectivity:
 - pulsed beam
 - calorimetry (fission tag)
 - fast timing
 - $\gamma\gamma~$ and $\gamma\gamma\gamma$ coincidence

100

0

200

300

400

Time [s]

Total Energy in nu-ball vs event multiplicity

Preliminary results (only half of Thorium data - The lower part of **the level scheme of** ⁸²Ge (Z=32, N=50) has been reconstructed by gating on the $2^+ \rightarrow 0^+$ transition

Fission isomer characteristic

- half-life
- partial half-lives: isomeric fission, back-decay to 1st minimum
- branching ration
- Fission barrier parameters
 - Barrier height
 - Transmission
- Nuclear structure above super-deformed ground-state Isomeric fission fragment characteristics

Spectroscopy above the shape isomer

FIG. 2. Parts of γ -ray spectra recorded by the two detectors shown in Fig. 1 in the time range from 117 to 440 ns after a short burst of 18-MeV deuterons hitting a natural uranium target. The line at 2512.7 keV is present only in the upper spectrum and is, therefore, attributed to genuine target events (i.e., to the decay of the ²³⁸U shape isomer). The 2543-keV line exhibited by both spectra is a typical (unidentified) roombackground line.

J. Kantele, Physical Review C, 29 (5), 1984.

Study of the ²³⁸U shape isomer

+

²³⁸U(n,n'), LICORNE neutron source and nu-ball

LICORNE

v-ball

- $E_n = (3.7 \pm 0.3) \text{ MeV}$
- o_{IF}≈80 μb
- IT/IF ≈ 95/5
- σ_{IT} ≈ 1.5 mb
 - Directional fast-neutron source
- High and pulsed neutron flux on target
- Allows using a detector array
- High peak efficiency with v-Ball
- High energy resolution and fast timing

Experimental setup and measurements

-May 2018

Experimental measurement (6 days)

- Target mass 81g
- 140 hr of data

 \sim 25 Tb row FASTER data \sim 6 Tb ROOT format data

Experimental setup and measurements

□ ⁷Li beam with energy of 18.5 MeV

Neutron energy spectrum

Preliminary Analysis

Time alignment

Time spectra of all detectors

Preliminary Analysis

1600

Preliminary Analysis

Data analysis scheme

Preliminary Analysis

From the E_{g,del}(M_{g,del}) we project E_{g,del} for M_{g,del} > 5
 Check time distribution -> is it compatible with T_{1/2}

Preliminary Analysis

v-ball calorimetry

Preliminary Analysis

v-ball calorimetry

Delay Events

Prompt Prompt

Preliminary Analysis

v-ball calorimetry

- Coupling v-ball hybrid spectrometer with LICORNE neutron source
- 3 experiments about neutron induced reaction γ spectroscopy was done.
- Analysis of data set is in the progress.

M.Lebois^{1,2}, J.N. Wilson^{1,2}, D. Thisse^{1,2}, L. Qi^{1,2}, I. Matea^{1,2}, F. Ibrahim^{1,2}, D. Verney^{1,2}, M. Babo^{1,2}, C.Delafosse^{1,2}, F. Adsley^{1,2}, G. Tocabens^{1,2}, Y. Popovitch², J.Nemer², A. Lopez-Martens⁶, K. Hauschild⁶, J. Ljungall⁶, D. Etasse¹⁵, D. Ralet¹⁵, R. Canavan^{3,4}, C. Henrich⁹, N. Cieplicka-Otynczak¹⁶, L. Cortes¹⁷, N. Warr¹⁰, K. Miernik¹², M. Rudigier^{3,4}, I. Kröll⁹, P-A. Söderström⁵, K. Belvedere³, K. Rezynkina⁸, P. Koseoglou⁹, J. Wiederhold⁹, L. Fraile¹⁸, S. Bottoni⁷, E. Adamska¹², A. Algora¹⁹, J. Benito Gracia¹⁸, G. Benzoni⁷, A. Blazhev¹¹, A. Boso^{3,4}, R. Chakma⁶, P. Davies²⁰, R-B. Gerst¹¹, A. Gottardo¹, V. Guadilla-Gomez²¹, G. Hafner¹¹, I. Homm⁹, L. Iska¹⁶, T. Kurtukia²², R. Lozeva⁶, M. Piersa¹², P. Regan^{3,4}, D. Reygadas Tello²³, V. Sanchez¹⁸, C. Surder⁹, M. Yavachova²⁴, M. Fallot²¹, B. Fornal¹⁶, S. Leoni 7, C. Schmitt²², M. Heine²², F. Zeiser²⁶, W. Paulson²⁶, D. Gestvang²⁶, S. Oberstedt¹³, D. Knežević¹⁴, A. Dragić¹⁴, Zs. Podolyak^{3,4}, R. Shearman^{3,4}, M. Diakaki²⁵, A. Oberstedt⁵, M. Bunce⁴, P. Inavov^{3,4}

Thank you

