Fast Neutron Processes on Molybdenum Isotopes

Cristiana Oprea, Ioan Alexandru Oprea

Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics 6 Joliot-Curie, 141980 Dubna, Russian Federation

Molybdenum nucleus has many natural and artificial isotopes important for fundamental and applicative researches. ⁹⁴Nb nucleus, important in nuclear technology, can be obtained in ⁹⁴Mo(n,p) and ⁹⁵Mo(n,np) processes. Cross sections, angular correlations and isomer ratios in fast neutrons induced reactions up to 20 MeV were evaluated using codes realized by authors as well as dedicated software. Contributions of different nuclear reaction mechanisms in the cross sections were also determined. Parameters of nuclear optical potential, density levels and radius channels were extracted. Theoretical evaluations were compared with existing experimental data. The results of present work were realized in the frame of the fast neutrons scientific program at FLNP basic facilities (IREN and EG5) and are necessary for future experiment preparation .

STRUCTURE OF THE PRESENTATION

1. INTRODUCTION

- 2. THEORETICAL BACKGROUND
- **3. COMPUTER CODES**
- 4. RESULTS
- **5. DISCUSSION**
- 6. CONCLUSIONS

1. INTRODUCTION – FAST NEUTRON PROCESSES

FAST NEUTRONS ACTIVATION ANALYSIS

- COMPLEMENTARY TO ACTIVATION WITH SLOW NEUTRONS

- POSSIBILITY TO CREATE BETTER GAMMA EMITTERS COMPARED WITH SLOW NEUTRONS

- POSSIBILITY TO INVESTIGATE LARGE SAMPLE DUE TO:

- PENETRATION DEPTH OF NEUTRONS
- ESCAPE FROM SAMPLE OF EMITTED GAMMAS

PROCESSES

- (n,n'), (n,n' γ), (n,2n), (n,p), (n,np), (n, α), (n,n α) etc

DIFICULTIES

- HIGH BACKGROUND

METHODS OF BACKGROUND REDUCTION

- NEUTRONS TAGGING

GENERAL

Precise nuclear data for:

- Nuclear energy existing fission reactors ; future fusion reactors
- Long lived radioactive waste
- Reprocessing of U and Th (Transmutation and Energy)
- Accelerated Driven Systems (ADS)

FAST NEUTRONS REACTIONS – ⁹⁴Nb PRODUCTION Processes:

- ⁹⁴Mo(n,p)⁹⁴Nb, ⁹⁵Mo(n,np)⁹⁴Nb

Fast Neutrons with Emission of Charged Particles

- Nuclear reaction mechanisms
- Nuclear Data for Structural Material needed to estimate gas production by (n,p) and (n, α) reactions

2. THEORETICAL BACKGROUNDS

- **Cross Sections Evaluations**
- -CS calculated with Talys
- **Incident energy** from threshold up to 20 MeV with the contribution of:
- Direct Processes -> DWBA
- Compound Processes >Hauser Feshbach Formalism
- Pre equilibrium >Two Component Exciton Model
- Nuclear Potential (implemented in Talys)
- Wood Saxon of Type: Volume and Surface
- Spin Orbit Interactions
- Potential Parameters: Obtained from Nuclear Data Processing
 - Local with Real and Imaginary Part
 - Global with Parameters by Koning Delaroche

Levels Density – Constant Temperature Fermi Gas Model

2. THEORETICAL BACKGROUNDS – HAUSER FESHBACH APPROACH

Cross section

 $W_{\alpha\beta}$ = Widths Fluctuation Factor (WFC)

WFC

- Indicates a correlation between the ingoing channel (incident) and outgoing channels
- At low energies (<1 MeV) WFC=1 no correlation between *in* and *out* channels
- Decreases slowly with the energy
- It is calculated by complicate procedures (ex Moldauer expression)

2. THEORETICAL BACKGROUNDS - ISOMER RATIO

$$R = \frac{Y^m}{Y^g}$$
 = Experimentally measured isomeric ratio

 $Y_m, Y_g =$ Yields of isomeric and unstable ground states

General Expression

$$R = \frac{Y_m}{Y_g} = \frac{\int\limits_{E_{th}}^{E_m} N_0 \phi(E) \sigma_m(E) dE}{\int\limits_{E_{th}}^{E_m} N_0 \phi(E) \sigma_g(E) dE}$$

 E_{th} = Threshold energy of nuclear reaction

 E_m = Maximal energy of incident particle

2. THEORETICAL BACKGROUNDS – ACTIVITY

$$A_{obs} = \frac{N\sigma\varphi a\varepsilon}{\lambda} \left[1 - Exp(-\lambda t) \right] Exp(-\lambda T) \left[1 - Exp(-\lambda \Delta T) \right]$$

Where:

- N = Number of atoms of the isotope of the element
- σ = cross section
- $a = \gamma$ -ray abundance
- φ = Neutron Flux
- **ε** = Detector efficiency
- λ = Decay constant
- t = Irradiation time
- T = Cooling time
- **ΔT = Counting time**

Yields and Activities – features not implemented yet in Talys

3. THEORETICAL BACKGROUNDS – TALYS

TALYS – Freeware soft working under LINUX – dedicated to nuclear reactions, fission and nuclear structure calculation

Possibility - to calculate inclusive and exclusive cross sections

Nuclear Reaction (binary) – X(x,y)Y

Inclusive cross section – including y particle from other open channels like (x,ny), (x,2ny),...

Exclusive cross section – taking into account the y particle only from X(x,y)Y reaction

4. RESULTS.

FAST NEUTRON REACTIONS WITH CHARGED PARTICLES EMISSION CASE OF ${}^{94}Mo(n,p){}^{94}Nb$ Reaction ; $Q_{np} = -1.26$ MeV

Importance – Obtaining of ⁹⁴Nb Nucleus Natural Molybdenum: Mo Z=42 Natural Isotopes of Mo with their abundance (%):

- 92 Mo(14.65), 94 Mo(9.19), 95 Mo(15.87), 96 Mo(16.67), 97 Mo(9.58), 98 Mo(24.29) - stables - 100 Mo(9.74) – Decay $\beta^-\beta^-$ to 100 Ru

Density of Natural Mo:10.28 g/cm³ : Spin and Parity of ⁹⁴Mo: 0⁺

Isomers in ⁹⁴Mo(n,p)^{94m,g}Nb Reaction

Results on:

- Inclusive and Exclusive Cross Sections
- Production of isomer and ground states of ⁹⁴Nb (m and g states)
- Parameters of Nuclear Potentials in incident an exit channels
- Activities and other Concurrent Processes

OBSERVATION:

- CONTRIBUTION OF DIRECT PROCESSES ON DISCRET STATES NEGLECTED BECAUSE THEY ARE ABOUT 10 TIME LOWER THAN THE RESULTS FROM THE FIGURE

CS HAS THE EXPECTED SHAPE - IT WILL INCREASES UP TO SOME MAXIMUM AND AFTER THAT WILL SLOWLY DECREASE (NOT REPRESENTED

CONTINUUM STATES - IMPORTANT

- COULOMB BARIER FOR CHARGED PARTICLES

DIRECT PROCESSES

- THEIR CONTRIBUTION TO CS IS INCREASING WITH THE INCIDENT ENERGY

- IN THE ANALYSED REACTION DIRECT PROCESSES BECOME DOMINANT WITH THE INCREASING OF THE ENERGY

4. RESULTS. INCLUSIVE REACTIONS. ALL EVALUATIONS

THE NUCLEAR REACTION ⁹⁴Mo(n,p)⁹⁴Nb: DIRECT AND COMPOUND MECHANISM ORIGINATED MAINLY BY PRE – EQUILIBRIUM PROCESSES

Isomer Ratio

 $\begin{array}{l} \mathsf{R} = 2.852 \ \ \oplus \ 0.013 - \text{Incident Neutron Flux =1} \\ \mathsf{R} = 2.860 \ \ \oplus \ 0.010 - \text{Incident Neutron Flux } \sim 1/\text{E}^{0.9} \\ \text{Gamma Transitions E}_{\gamma} = 0.0409 \text{ MeV} \end{array}$

PRODUCTION OF:

- ⁹⁴Nb nucleus in isomer and ground state (m, g)

Standard Talys Input:

- Potentials
- Density Levels

Experimental Data:

- Described Well
- Further Analysis of
 Experimental Data and
 Talys Input Parameters

Cross Section of Isomer and Ground States of ⁹⁴Nb

4. RESULTS. EXCLUSIVE REACTIONS. CONCURENT PROCESSES

In the ⁹⁴Mo(n,p)⁹⁴Nb Reactions for Incident Neutrons from Threshold up to 20 MeV many channels are open

- 2 channels: ⁹⁴Mo(n,np)⁹³Nb (Q=-8.49 MeV) and ⁹⁴Mo(n,2n)⁹³Mo (Q=-9.67 MeV)

4. RESULTS. EXCLUSIVE REACTIONS. SECOND WAY OF ⁹⁴Nb PRODUCTION

⁹⁴Nb isotopes – obtained by ⁹⁵Mo(n,np)⁹⁴Nb reaction (Q= - 8.63 MeV) Realized an analyze of Inclusive and Exclusive Reactions Presented only the main Results on Exclusive Reactions

4. RESULTS. EXCL REACTIONS. ⁹⁴Nb PRODUCTION. CONCURENT PROCESSES

Production of ⁹⁵Nb

Standard Talys Input – Acceptable

Description of Experimental Data

Concurrent Processes:

⁹⁵Mo(n,p)⁹⁵Nb (Q = - 0.1432 MeV);
 ⁹⁵Mo(n,2np)⁹³Nb (Q = -15.857 MeV)
 Exclusive Processes for ⁹⁵Mo(n,p)⁹⁵Nb

4. RESULTS. EXCL REACTIONS. TALYS POTENTIAL PARAMETERS

Cross Sections Evaluation Realized with Standard Input of Talys

Wood – Saxon Potential Parameters – ⁹⁴Mo(n,p)⁹⁴Nb n + ⁹⁴Mo channel

V	r _v	a _v	W	r _w	a _w	V _{so}	r _{vso}	a _{vso}
[MeV]	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]	[MeV]	[fm]	[fm ⁻¹]
50.99	1.22	0.658	0.16	1.22	0.658	5.99	1.05	0.58

p + ⁹⁴Nb channel

V	r _v	a _v	W	r _w	a _w	V _{so}	r _{vso}	a _{vso}
[MeV]	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]
61.94	1.215	0.664	0.13	1.215	0.664	6.03	1.043	0.59

4. RESULTS. EXCL REACTIONS. TALYS POTENTIAL PARAMETERS

Cross Sections Evaluation Realized with Standard Input of Talys

Wood – Saxon Potential Parameters – ⁹⁵Mo(n,np)⁹⁴Nb n + ⁹⁵Mo channel

V	r _v	a _v	W	r _w	a _w	V _{so}	r _{vso}	a _{vso}
[MeV]	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]	[MeV]	[fm]	[fm ⁻¹]
51.27	1.215	0.664	0.16	1.215	0.664	5.99	1.044	0.59

p + ⁹⁴Nb channel

V	r _v	a _v	W	r _w	a _w	V _{so}	r _{vso}	a _{vso}
[MeV]	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]	[MeV	[fm]	[fm ⁻¹]
62.10	1.215	0.664	0.13	1.215	0.664	6.03	1.044	0.59

4. RESULTS. ACTIVITIES. ISOMER RATIO MEASUREMENTS

MODEL - REAL TARGET OF 1 CM X 1 CM X 0.1 CM

DESINSITY – 10.28 g/cm³

Goal – Activity obtained in Experiment at Different Energies

⁹⁵ Mo(n,np) ^{94m} Nb		⁹⁵ Mo(n,np) ^{94g} Nb		⁹⁵ Mo(n,p) ^{95m} Nb		⁹⁵ Mo(n,p) ^{95g} Nb		
E _n [MeV]	σ [mb	A _{obs} [dez]	σ [mb	A _{obs} [dez]	σ [mb	A _{obs} [dez]	σ [mb]	A _{obs} [dez]
14.1	5.76	1.86 · 10 ⁶	3.09	1.7 · 10 ⁻³	8.56	9818	6.95	7
20	61.8	2.00 · 10 ⁷	31.1	1.7 · 10 ⁻²	9.67	1109	48.5	47

 $\tau_{\rm m}$ = 6.263m; $\tau_{\rm g}$ =2.03 · 10⁶y $\tau_{\rm m}$ = 86.6 h ; $\tau_{\rm g}$ = 34.975 d

Irradiation time = 3 min; Cooling time = 3 min; Counting time = 5 min

SAAGAS 26 VIENNA 19 – 22 February 2017

4. RESULTS. ACTIVITIES. ISOMER RATIO MEASUREMENTS

MODEL - REAL TARGET OF 1 CM X 1 CM X 0.1 CM

DESINSITY – 10.28 g/cm³

Goal – Activity obtained in Experiment at Different Energies

⁹⁴ Mo(n,p) ^{94m} Nb		⁹⁴ Mo(n,p) ^{94g} Nb		⁹⁴ Mo(I	n,np) ^{93m} Nb	⁹⁴ Mo(n,np) ^{93g} Nb		
E _n [MeV]	σ [mb	A _{obs} [dez]	σ [mb	A _{obs} [dez]	σ [mb	A _{obs} [dez]	σ [mb]	A _{obs} [dez]
14.1	27.1	8.75 · 10 ⁶	9.48	6.4 · 10 ⁻³	6.95	0	6.95	0
20	22.2	7.17 · 10 ⁵	7.83	4 .3 · 10 ⁻³	9.67	0	48.5	0

 $τ_m = 6.263m; τ_g = 2.03 \cdot 10^6 y$ $τ_m = 16.13 y; τ_g = stable$

Irradiation time = 3 min; Cooling time = 3 min; Counting time = 5 min

Talys – for gamma and neutrons induced reactions activities and yields calculations on sample target are not implemented Activities are evaluated by us – simple model of isomer ratios measurements

Results suggest the possibility of the isomer ratio measurements

5. DISCUSSIONS

Analyzed Nuclear Reactions Induced by Fast Neutrons for:

Fast Neutrons Activation and Isomer Ratio Evaluation Reactions: ⁹⁴Mo(n,p)⁹⁴Nb and ⁹⁵Mo(n,np)⁹⁴Nb

For mentioned Processes were Evaluated with Talys:

- Cross Sections (Inclusive and Exclusive)
- Isomer Ratios
- Activities and Yields on Simple Modeled Measurements

Comparison with Existing Experimental Data

- using a Standard Talys Input the CS Evaluation are in well and / or acceptable Accordance with Existing Experimental Data

- For many Evaluations like CS productions of isomer and isotopes and Isomer Ratios – no experimental data

- Obtained New Nuclear Data on Potential and Level Densities Parameters

Cross Sections – by Talys

6. CONCLUSIONS

Talys – Rapid and Efficient Codes for Evaluation of Nuclear Data (Reaction Models ->Cross Section and Nuclear Structure)

Necessary a Better Description of Experimental Data on Analyzed Processes

Fast Neutrons – Obtained New Theoretical Evaluation on Isomer Production and Isomer Ratios - > New Measurements and Experiments

Improvement of Experimental and Theoretical Data for Tagged Neutrons Method Necessary to test New Elements

Necessary ot use Computer Codes for Experiment Simulations – GEANT4 - Activities, Yields and other

Present Evaluations

- Experiment Proposal at JINR Dubna Facilities
- LNF JINR Dubna Facilities IREN, IBR-2
- LNR JINR Dubna Microtron MT-25

THANK YOU VERY MUCH

FOR YOUR ATTENTION! ©