MEASUREMENT OF THE ROT-EFFECT IN FISSION OF ²³⁵U INDUCED BY MONOCHROMATIC POLARIZED NEUTRONS WITH AN ENERGY OF 60 meV

Yu.N. Kopatch¹, V.V. Novitsky^{1,2}, G.S. Ahmadov^{1,6}, A.M. Gagarski³, <u>D.B. Berikov^{1,7}</u>, G.V. Danilyan^{1,2}, V. Hutanu⁴, J. Klenke⁵, S. Masalovich⁵, H. Deng⁴

¹Joint Institute for Nuclear Research, Dubna, Russia

²Institute for Theoretical and Experimental Physics of National Research Centre "Kurchatov Institute", Moscow, Russia

³Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Gatchina, Russia

⁴Institut für Kristallographie, RWTH Aachen and Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany

⁵Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Garching, Germany

⁶National Nuclear Research Centre, Baku, Azerbaijan

⁷L.N.Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan

・ 同 ト ・ ヨ ト ・ ヨ ト

Historical background:

- T-odd effects in ternary fission (experiments at the ILL, Grenoble)
- T-odd effects in the γ-ray and neutron emission from binary fission (experiments at the HMI, Berlin and FRM-II, Garching)
- Interpretion of the T-odd effects in fission
- Investment at the hot neutron source of FRM-II
 - Experimental setup
 - Pirst preliminary results
- Summary and outlook

A B A A B A

The T-odd effects in fission of heavy nuclei have been known since more than a decade. The angular distribution for one of the fission fragments (FF) and ternary particles (TP) at given neutron spin (σ) can be written as:

$$W(heta, arphi) \sim 1 + < D > \cdot \sigma \cdot [p_f imes p_lpha]$$

 p_f, p_α - momentum of one of the FFs and the TP;

D - coefficient measuring the size of the triple correlation $\sigma \cdot [p_f \times p_{\alpha}]$;

Experiments at the ILL: TRI-effect

1998 - discovery of the <u>TRI – effect</u> in the ternary fission of ^{233}U P. Jesinger, A. Kotzle , A.M. Gagarski , F. Gonnenwein , G. Danilyan et al, NIM A 440 (2000), p. 618-625

$$W = \mathbf{1} + D_{TRI} \cdot \sigma \cdot [\rho_{LF} \times p_{I}] \quad D_{TRI} = \frac{N_{up}^{\mathbf{0}} - N_{down}^{\mathbf{1}}}{N_{up}^{\mathbf{0}} + N_{down}^{\mathbf{1}}} \quad W = (\mathbf{0}, \mathbf{70} \pm \mathbf{0}, \mathbf{02}) \cdot \mathbf{10}^{-3}$$

Berikov Daniyar - JINR, FLNP, Junior Researcher

June 10 - June 14, 2019, ISINN-27, Dubna, Russia 4/22

Experiments at the ILL: ROT-effect

2005 - discovery of the <u>ROT – effect</u> in the ternary fission of ^{233}U F. Goennenwein, M. Mutterer, A. Gagarski, I. Guseva, G. Petrov et al,Phys. Lett. B 652 (2007) 13.

 $W = \mathbf{1} + D_{ROT} \cdot \sigma \cdot [p_{LF} \times p_T](p_{LF} \cdot p_T) \quad A_i =$

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 5/22

Experiments at the HMI (Berlin): ROT-effect in the γ -ray emission from $^{235}U(n, f)$

ROT asymmetry coefficients in units of 10^{-4}

Angle to the fission axis	235 _U
0	-0.1 ± 0.3
$\pi/8$	$+0.8\pm0.2$
$\pi/4$	$+1.5\pm0.2$
$3\pi/8$	$+0.7\pm0.3$
$\pi/2$	-0.3 ± 0.3

・ロト ・ 同 ト ・ 三 ト ・

G.V. Danilyan, P. Granz, V.A. Krakhotin, F. Mezei, V.V. Novitsky, V.S. Pavlov, M. Russina, P.B. Shatalov, T. Wilpert, Phys. Lett. B 679 (2009) 25–29

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 6/22

Experiments at the FRM-II: ROT-effect in γ -ray and neutron emission

G. V. Danilyan, J. Klenke , V. A. Krakhotin, Yu. N. Kopach, V. V. Novitsky, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl., 2011, Vol. 74, No. 5, pp. 671–674.

2011 - Search for the TRI- and ROT – effects in the γ -ray and neutron emission from fission of ²³⁵ U at the MEPHISTO instrument (FRM-II reactor, Garching).

Summary of results for the polarized cold neutron beam

Averaged asymmetry coefficients in units of 10⁻⁵

Fission product	Angle with respect to the fission axis	ROT asymmetry	TRI effect
γ -rays	67.5	20.9 ± 2.4	1.1 ± 2.5
neutrons	67.5	-0.3 ± 2.2	-0.7 ± 2.3
neutrons	22.5	15.7 ± 2.0	

・ 同 ト ・ ヨ ト ・ ヨ ト …

1. Historically the first attempt to explain the nature of the TRI-effect was based on the statistical model (V.Bunakov, G. Petrov, F. Goennenwein. 2000, ISINN-8). 2. After the ROT-effect discovery the semi-classical model of deformed fissionning system rotation has been proposed (A. Gagarski, I. Guseva, F.Goennenwein. et al). 3. Hypothesis of the "scission γ -emission" for the γ -rays ROT-effect explanation in the ²³⁵U binary fission (G.Danilyan et al. 2008).

4. Explanation of the ROT-effect for the γ -rays by the angular anisotropy of the prompt γ -rays, emitted from fission fragments (V.Novitsky, 2010).

5. Calculations of the ROT-effects for the γ -rays and neutrons by Guseva, 2010 6. The quantum mechanical explanations of the T-odd asymmetry effects with taking into account the interference of neutron resonances (V. Bunakov, S. Kadmensky, 2006 -2009).

7. Theoretical approach of spin-orbital interaction for T-odd asymmetry effects explanation (*A. Barabanov, 2011, ISINN-19*).

8. Comprehensive model description of all experimental data on T-effects in ternary fission (A.Gagarski et al, Phys. Rev. C 93, 054619, 2016).

The rotation is being polarized after capturing of the polarized cold neutron

$$P(J^{+}) = \frac{(2I+3)}{[3 \cdot (2I+1)]} p_n \tag{1}$$

$$P(J^{-}) = -\frac{1}{3}p_{n}$$
 (2)

Speed and direction of rotation is differ for J^+ and J^- states

$$\omega(J,K) = \begin{cases} \frac{J(J+1) - K^2}{J} \frac{\hbar}{2\Im} p_n \\ -\frac{J(J+1) - K^2}{J+1} \frac{\hbar}{2\Im} p_n \end{cases}$$
(3)
for $J^+ = I + 1/2$ for $J^- = I - 1/2$

Quasi-classical model

- Effect for the gamma-rays is much smaller due to smaller anisotropy
- $\bullet\,$ The sign of the measured effect is different for $\alpha\text{-particles}$ and $\gamma\text{-rays}$
- There are no theoretical arguments for the existence of the TRI-effect for $\gamma\text{-rays}$

The role of J,K quantum numbers

- $J\pi K$ quantum numbers, which characterize the fission channel
- Depending on the target nucleus and incident neutron energy, different fission channels can be open (dominate)
- The "rotational"properies of the nucleus will be different for different fission channels

Berikov Daniyar - JINR, FLNP, Junior Researcher

June 10 - June 14, 2019, ISINN-27, Dubna, Russia 11/22

Spin-seperated cross section for $^{235}U(n, f)$

For the 0.3 eV resonance the ratio of the cross sections changes.

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 12/22

The POLI instrument at the FRM-II reactor

Beam parameters:

 $\lambda = 1.15(E_n \sim 0.06 eV)$ Flux: $\sim 5 \cdot 10^6 n/cm^2/s$ Polarisation: $\sim 100\%$

A B A A B A

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 13/22

Gas pressure $\sim 2.5~{\rm bar}$

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 14/22

Spin control coils

Photo of the experimental setup

Berikov Daniyar - JINR, FLNP, Junior Researcher

June 10 - June 14, 2019, ISINN-27, Dubna, Russia 16/22

イロト イポト イヨト イヨト

Layout of the experimental facility. View from the beam counters

The chamber was filled with CF_4 gas at a pressure of about 10 mbar.

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 17/22

Detectors of γ -rays and neutrons

8 cylindrical plastic scintillators at angles ±22.5, ±67.5, ±112.5, ±157.5
4 Nal scintillators at angles ±45, ±135

Time-of-flight spectrum from one of the plastic detectors.

Berikov Daniyar - JINR, FLNP, Junior Researcher

June 10 - June 14, 2019, ISINN-27, Dubna, Russia 18/22

Results

Count rates asymmetry $R(\theta) = \frac{N_{+}(\theta) - N_{-}(\theta)}{N_{+}(\theta) + N_{-}(\theta)}$

The angular dependence in the first approximation can be fitted by the function

 $F = A \cdot sin(2\theta)$

neutrons

- The ROT-effect has been measured for the first time in fission of ^{235}U induced by polarized monochromatic neutrons with an energy of 60 meV.
- The anisotropy parameter A determined from the experimental data for prompt gamma-rays and neutrons was established at the level of 10^{-4} . In spite of the smallness of the effects, the results are in agreement with the most modern theoretical model prediction.
- We believe that it is important to continue this type of experiments and to try extend the measurements to higher energies, e.g. to the 1.14 eV resonance where the effect should be larger than for cold neutrons and where practically only the J=4 spin state is present.

伺下 イヨト イヨト

Thank you for your attention!!!

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 – June 14, 2019, ISINN-27, Dubna, Russia 21/22

Average value: $(-6.5 \pm 3.9) \cdot 10^{-5}$

Berikov Daniyar - JINR, FLNP, Junior Researcher June 10 - June 14, 2019, ISINN-27, Dubna, Russia 22/22