

Measurement of the neutron flux with small collimator of Back-n #ES1 at CSNS

<u>Yonghao CHEN(陈永浩)</u>^{1,2}, Yiwei YANG(羊奕伟)³, Rong LIU(刘荣)³, Ruirui FAN(樊瑞睿), Wei JIANG(蒋伟), Qiang LI(李强), Han Yi(易晗), Hantao JING(敬罕涛), Jingyu TANG(唐靖宇)

¹Institute of High Energy Physics(IHEP), Chinese Academy of Science(CAS), China ²Spallation Neutron Source Science Center, China ³Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physic, China

28-th International on Nuclear Data for Science and Technology. May 24-28, 2021.

1. CSNS and Back-n facility

- 2. Experimental setup
- 3. Analysis and results
- 4. Conclusions and outlooks

• Where are we (China Spallation Neutron Source)?

• CSNS is located in Guangdong-Hong Kong-Macao Greater Bay Area

• CSNS campus

Layout of CSNS accelerators

Layout of the Back-n WNS beam line

- Two ends tations: #ES1 with flight path ~55 m, #ES2 with ~76 m
- Wide neutron energy range (from ~0.5 eV to ~200 MeV)
- Weak γ-flash compared with forward direction due to back-streaming design

- Beam characterization is important for newly built Back-n facility
- Knowledge of the flux is crucial for feasibility study and data analysis

- Beam characterization is important for newly built Back-n facility
- Knowledge of the flux is crucial for feasibility study and data analysis

Mode	Shutter (mm)	Coll#1 (mm)	ES#1 spot (mm)	ES#1 flux (n/cm ² /s)	Coll#2 (mm)	ES#2 spot (mm)	ES#2 flux (n/cm ² /s)
Low intensity	Φ3	Φ15	Φ15	1.3×10^{5}	Φ40	Φ20	4.6×10^{4}
Small spot	Φ12	Φ15	Φ20	1.6×10^{6}	Φ40	Φ30	6.1×10^{5}
Large spot	Φ50	Φ50	Φ50	1.8×10^{7}	Φ58	Φ60	6.9×10^{6}
Imaging	78×62	76×76	75×50	2.0×10^{7}	90×90	90 × 90	8.6×10^{6}

Table 1 Four sets of standard beam spots and neutron fluxes with relevant collimator apertures at Back-n (100 kW)

J.Y. TANG, et al, Nucl. Sci. Tech. (2021) 32:11 (Above data are from simulation)

This work reports the first measurement of the flux with small collimator at #ES1

- 1. CSNS and Back-n facility
- 2. Experimental setup
- 3. Analysis and results
- 4. Conclusions and outlooks

• 3 detection system are used synchronously to characterize the neutron flux

Detector	Neutron converter	Measurement energy range
⁶ Li-Si	⁶ LiF / ⁶ Li(n, t)	~1 eV-10 keV
FIXM	²³⁵ U/ ²³⁵ U(n, f)	~1 eV-~100 MeV
ΔE-E (Si-Csl)	Polythene / H(n, n)H	~10 MeV-~100 MeV

- 1. CSNS and Back-n facility
- 2. Experimental setup
- 3. Analysis and results
- 4. Conclusion and outlook

Open chamber

²³⁵U sample

Yonghao CHEN, "*Measurement of the neutron flux with small collimator of Back-n #ES1 at CSNS*". ISINN-28, May 24-28, 2021.

²³⁵U Thickness: 323.44 ug/cm²

3. Analysis and results: FIXM

(1) Time-of-flight (TOF) method to determine neutron energy

- T₀ is calibrated by the Y-induced events
- Flight path *L* is calibrated by the resonance peaks of ²³⁵U

Yonghao CHEN, "Measurement of the neutron flux with small collimator of Back-n #ES1 at CSNS". ISINN-28, May 24-28, 2021.

 $v = \frac{L}{TOF} = \frac{L}{T - T_0}$

(2) Fission rate determination

(2) Fission rate determination

Measured in double-bunch mode of accelerator:

2 identical proton bunches with fixed time interval (410 ns) in one pulse

Double-bunch unfolding is applied for neutrons above 10 keV

(3) double-bunch unfolding

• An iterative algorithm is developed for unfolding based on the Bayes' theorem

(4) Neutron flux determination

$$F(E_n) = \frac{N(E_n)}{S(E_n)\mathcal{O}(E_n)N_V}$$

Neutron flux

Φ

 E_n

Ν

3

σ

 N_v

- Neutron energy
- Reaction rate
- Detection efficiency(~95%)
- Cross section
- Sample quantity

 $F(E_n) = \frac{N(E_n)}{S(E_n)\mathcal{O}(E_n)N_V} \qquad \begin{array}{c} E_n \\ N \\ \varepsilon \\ \sigma \\ N_V \end{array}$

Neutron flux

Φ

- Neutron energy
- Reaction rate
- Detection efficiency(~95%)
- Cross section
- Sample quantity

Neutron flux measured by FIXM with 100 bins per decade (bpd) Integral flux: 1.63×10^6 n/cm²/s (small collimator)

(1) TOF method

- T₀ is calibrated by the Y-rays
- L is calibrated by the resonance peaks of ⁶Li

(2) Reaction rate

Double-bunch unfolding is not needed for low energy neutrons (<10 keV)

(3) Efficiency simulation (Geant4)

G4 detector geometry

Efficiency curve

 Efficiency correction is slight when include both triton and alpha in the reaction rate (compensation)

(4) Neutron flux

• ⁶Li-Si measurement is normalized to FIXM measurement at 1 eV

3. Analysis and results: ΔE -E detector

neutrons

(1) Δ E-E particle identification - 25 °

(2) n-p reaction rate - 25 °

Double-bunch effect (unfolding is not needed)

(3) Carbon background correction - 25 °

(4) Efficiency simulation (Geant4)

G4 detector geometry

Simulated ΔE -E distribution of PE sample

(4) Efficiency simulation (Geant4)- 25 °

• The energy dependency of the efficiency is not negligible

(5) Neutron flux

$$F(E_n) = \frac{N(E_n)}{S(E_n)e(E_n)N_V}$$

Φ

 E_n

Ν

3

σ

 N_{v}

- Neutron flux
- Neutron energy
- Reaction rate
- Detection efficiency (simulated)
- **Cross section**
- Sample quantity

Yonghao CHEN, "Measurement of the neutron flux with small collimator of Back-n #ES1 at CSNS". ISINN-28, May 24-28, 2021.

∃×10⁶

120

En (eV)

CSNS Back-n #ES1 neutron flux with small collimators

- Measured neutron flux: 1.63×10⁶ n/cm²/s
- Simulated neutron flux: 1.67×10⁶ n/cm²/s

- 1. Back-n facility at CSNS
- 2. Experimental setup
- 3. Analysis and results
- 4. Conclusions and outlooks

Conclusions:

- 1. First measurement of the neutron flux of Back-n #ES1 with small collimator was successfully campaigned and preliminary results are obtained
- 2. 3 detection systems demonstrate a consistency
- 3. Measurement and simulation have an general agreement both in shape and flux

Outlooks:

- Good consistency between the FIXM and ΔE-E measurements is motivating us to perform the absolute measurement (cross section measurement relative to n-p scattering)
- 2. Simulation will be studied in more details and need to be validated
- 3. The uncertainty will be estimated and the flux will be finalized

Measurement of the neutron flux with small collimator of Back-n #ES1 at CSNS

<u>Yonghao CHEN(陈永浩)</u>^{1,2}, Yiwei YANG(羊奕伟)³, Rong LIU(刘荣)³, Ruirui FAN(樊瑞睿), Wei JIANG(蒋伟), Qiang LI(李强), Han Yi(易晗), Hantao JING(敬罕涛), Jingyu TANG(唐靖宇)

¹Institute of High Energy Physics(IHEP), Chinese Academy of Science(CAS), China ²Spallation Neutron Source Science Center, China ³Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physic, China

28-th International on Nuclear Data for Science and Technology. May 24-28, 2021.