

Influence of the ion fluences to transition layers in SiO_{2}/TiO_{2} multilayer samples implanted Kr⁺ ions.

PL. Tuan^{1,2,*)}, M. Kulik^{2,3)}, T.V. Phuc^{2,4,5)}, L.H. Khiem^{4,5)}, Doroshkevich A.S.^{2,6)}, A. Stanculescu⁷⁾, J. Żuk³⁾, 1) Hanoi Irradiation Center, Vietnam Atomic Energy Institute, Hanoi, Vietnam ²⁾ Joint Institute for Nuclear Research, Dubna 141980, Russia

³⁾ Institute of Physics, Maria Curie-Skłodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland 4) Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam

⁵⁾ Graduate University for Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

⁶⁾ Donetsk Institute for Physics and Engineering named after O.O. Galkin, 03028, Nauki ave., 46 Kiev, Ukraine 7) National Institute for Materials Physics (NIMP) Strada Atomiștilor 405, Măgurele 077125, Romania.

INTRODUCTION

- Multilayers SiO₂/TiO₂ with Si substrate irradiated with 250 keV Kr⁺ beam at room temperature. The implantation doses for individual sample varied from 1×10¹⁵ cm⁻² to 3×10¹⁶ cm⁻².
- The thickness of these layers in the samples before and after ion irradiation were investigated by Rutherford backscattering spectrometry (RBS) method.
- The spectroscopy ellisometric (SE) method, the angle Ψ and Δ were determined.
- The SE and MAIE method were used in the study of pseudo dielectric function $<\epsilon>$ of the samples.

EXPERIMENTAL

- The multilayers SiO₂/TiO₂ samples were implanted with Kr⁺ ions. The process was performed at room temperature with the use of a UNIMAS implanter.
- · The thickness of these layers in the samples were investigated by RBS at FLNP, JINR, Dubna.

- · The SE measurement were performed using the rotating-analyzer ellisometry (RAE) at room temperature. The spectra of the angles $\psi(\lambda)$ and $\Delta(\lambda)$ were collected with the wavelength from 250 to 1000 nm and incident angles from 68° to 86°. The optical parameter were calculated by using the Multiple-Angle-of-Incident Ellisometry (MAIE) method.
- The SE experiments were conducted at the Institute of Electron Technology, Lotników, Warsaw, Poland.

RESULTS AND DISCUSSIONS

spectra of scattered a The particles on the nucleons of the atom located in the layers in virgin and implanted samples with Kr⁺ ions.

All samples were measurements under the same conditions.

The shifting of these spectra in the regions of SiO₂, TiO₂ and Si substrate observed. These shifting increase when the fluence of ion increase.

This effect can be attributed to mixing of the atoms between SiO₂ and TiO₂ layers and the change of the concentration of displaced atoms in Kr+ implanted samples.

The forming and changing of thickness of layers in the samples were calculated by SIMNRA and the relative of there change were investigated.

	thickness (10 ¹⁵ at./cm ²)						۶F					
Layers	virgin	1×1015	3×1015	1×1016	3×10 ¹⁶							
SiO ₂ (1)	104.0	95.0	95.0	89.0	63.0			_			/	/
transition 1	20.0	30.0	31.0	40.0	70.0	2.	0 -	■ tra ● tra ▲ tra	insition 1 insition 2 insition 3			
TiO ₂ (2)	112.0	105.0	100.0	90.0	75.0			🔻 tra	insition 4			
transition 2	23.0	31.0	33.5	40.0	55.0	1. [a:n]	5 -					-
SiO ₂ (3)	90.0	80.0	74.0	73.0	45.0	- ı.						-
transition 3	30.0	38.0	40.0	45.0	60.0				/_			
TiO ₂ (4)	120.0	100.0	100.0	100.0	105.0	0.	<u>-</u>			_		
transition 4 SiO ₂ (5)	30.0 85.0	36.0	37.0 95.0	38.0 95.0	45.0 97.0	0						
						0.	0		^{1x10¹⁶} fluen	ce [cm ⁻²] ^{2x10¹}	16	3x10 ¹⁰

These changes in the shape of the spectra Δ (E) can be attributed the thickness of these layers in the samples after ion implantation with different ion fluence.

Changes in the shape of the spectra Ψ (E) can be explained by the increase in the surface layer disorder due to an increase in the concentration of various defects in the samples.

CONCLUSIONS

- The forming and growing of transition layers between the SiO₂ and TiO₂ materials has been observed.
- The thickness of these transition layers increases as function of implanted fluence.
- These phenomenon was confirmed by the RBS measurement and SE data.

REFERENCES

[1] M. Kulik, W. Rzodkiewic, L.Gluba, A.P. Kobzev, Dielectric function of native oxide on ion implanted GaAs, Acta Phys0. Pol. A 123 (2013) 956.

[2] J.W. Nastasi and M. Mayer, 2007, Ion Beam Mixing, in Radiation Effects in Solids, NATO Science Series, Springer, Dordrecht.

[3] W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectroscopy, Academic Press, New York San Francisco London, 1978.

[4] ...