





## Multiband coupling and nuclear softness in dispersive Lane-consistent optical model for actinides

**D.Martyanov**, E.Soukhovitskii, R.Capote, J.M.Quesada Molina, S.Chiba







### Basics: Optical model



#### **Results:**

- total cross section
- direct scattering cross sections, angular dependencies, polarization change
- absorption cross section, nuclear transmission coefficients

#### Basics: Coupled channels

- Method for exact account of interaction between different reaction channels:
  - ✓Orbital moments
  - ✓Incident particle spins
  - ✓ Residual target excitations
  - ✓...
- Solve system of equations describing channels, coupled by optical potential
- Result scattering matrix

# Model feature 1: Dispersive relation

#### Casuality → Kramers–Kronig relations:

 Energy-dependent imaginary part of the potential yields additional (polarization) term to the real part:

$$\Delta V(E) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{W(E')}{E' - E} dE'$$

- Physically realistic and constraint energy dependence of the potential
- Used energy dependence allows analytical expressions for  $\Delta V(E)$

#### Model feature 2: Lane consistency

Isospin-symmetric form of optical potential (only nuclear part without Coulomb):

• 
$$V_{pp} = V_0 + \frac{N-Z}{4A}V_1$$
,

• 
$$V_{nn} = V_0 - \frac{N-Z}{4A}V_1$$

• 
$$V_{pn} = \frac{\sqrt{N-Z}}{2A} V_1$$

Allows same parameterization for direct neutron, proton scattering and (p,n)-reactions

#### Optical potential





Coulomb correction (allows Lane consistency):  $E = E_{inc} - E_{Coul}$ 

### Optical model for soft deformed nuclei



Taylor expansion near sphere

Explicit deformations  $\rightarrow$  vibrations bad convergence for big deformations Static multipolar expansion

Good convergence for big static deformations no explicit deformations  $\rightarrow$  no vibrations!

But actinides are both considerably deformed in GS and soft for vibrations

## Solution: Taylor expansion near axial static form

$$R_{i}(\theta',\varphi')$$

$$= R_{0i} \left\{ 1 + \sum_{\lambda=2,3;even\ \mu} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta',\varphi') + \sum_{\lambda=4,6} \beta_{\lambda0} Y_{\lambda0}(\theta') \right\}$$

$$= R_{i}^{zero}(\theta') + \delta R_{i}(\theta',\varphi';\delta\beta_{2},\gamma,\beta_{3}) \qquad \beta_{2} = \beta_{20} + \delta\beta_{2} + \delta\beta_{2}$$

 $\lambda = 2.4.6$ 

 $+ \beta_3 Y_{30}(\theta') + \beta_{00} Y_{00} \}$ 

 $+R_{0i}\left\{\beta_{20}\left[\frac{\delta\beta_2}{\beta_{20}}\cos\gamma+\cos\gamma-1\right]Y_{20}(\theta')\right\}$ 

 $+\frac{(\beta_{20}+\delta\beta_{2})\sin\gamma}{\sqrt{2}}[Y_{22}(\theta',\varphi')+Y_{2-2}(\theta',\varphi')]$ 

Nearsphere

## Potential expansion near axially deformed shape

 $V(r, R(\theta', \varphi'))$ 



E.S. Soukhovitskiĩ et al, PRC 94 (2016) 64605

#### Coupled channels matrix elements

 $\langle i|V(r,\theta,\varphi)|f\rangle$ 

$$= \sum_{K}^{I} \sum_{K'}^{I'} A_{K}^{I'} A_{K'}^{I'\tau'} \left\{ \sum_{\lambda=0,2,4,\dots} v_{\lambda}(r) \langle IK || D_{;0}^{\lambda} || I'K \rangle A \left( ljI; l'j'I'; \lambda J \frac{1}{2} \right) \delta_{KK'} \quad \text{Rigid rotor} \\ + v_{2}(r) \left\{ \left[ [\boldsymbol{\beta}_{2}]_{eff} + [\boldsymbol{\gamma}_{20}]_{eff} \right] \langle IK || D_{;0}^{2} || I'K \rangle A \left( ljI; l'j'I'; 2J \frac{1}{2} \right) \delta_{KK'} \quad \boldsymbol{\beta} \text{ and } \boldsymbol{\gamma} \text{-vibrations} \\ + [\boldsymbol{\gamma}_{22}]_{eff} \langle IK || D_{;2}^{2} + D_{;-2}^{2} || I'K \rangle A \left( ljI; l'j'I'; 2J \frac{1}{2} \right) \\ + [\boldsymbol{\beta}_{3}]_{eff} \langle IK || D_{;0}^{3} || I'K \rangle A \left( ljI; l'j'I'; 3J \frac{1}{2} \right) \delta_{KK'} \quad K = 2 \text{ band coupling} \\ + [\boldsymbol{\beta}_{0}]_{eff} \delta_{KK'} \delta_{II'} \delta_{jj'} \delta_{II'} \right\} \right\} \quad \text{Octupole coupling} \\ \text{(negative parity band)}$$

#### Volume conservation term



Incompressible nuclear matter: 
$$V = V'$$
  $\beta_{00} = -\frac{\sum \beta_{\lambda}^2}{\sqrt{4\pi}}$ 

#### Effective deformations

$$\begin{bmatrix} \boldsymbol{\beta}_2 \end{bmatrix}_{eff} = \left\langle n_i(\beta_2) \left| \frac{\delta \beta_2}{\beta_{20}} \right| n_f(\beta_2) \right\rangle \qquad \begin{bmatrix} \boldsymbol{\beta}_3 \end{bmatrix}_{eff} = \left\langle n_i(\beta_3) \left| \frac{\beta_3}{\beta_{20}} \right| n_f(\beta_3) \right\rangle$$

$$\begin{bmatrix} \boldsymbol{\gamma}_{20} \end{bmatrix}_{eff} = \left\langle n_i(\gamma) \right| \cos \gamma - 1 \left| n_f(\gamma) \right\rangle \qquad \begin{bmatrix} \boldsymbol{\gamma}_{22} \end{bmatrix}_{eff} = \left\langle n_i(\gamma) \left| \frac{\sin \gamma}{\sqrt{2}} \right| n_f(\gamma) \right\rangle$$

$$\begin{bmatrix} \boldsymbol{\beta}_2^2 \end{bmatrix}_{eff} = \left\langle n_i(\beta_2) \left| \frac{\delta \beta_2^2}{\beta_{20}^2} \right| n_f(\beta_2) \right\rangle \qquad \begin{bmatrix} \boldsymbol{\beta}_3^2 \end{bmatrix}_{eff} = \left\langle n_i(\beta_3) \left| \frac{\beta_3^2}{\beta_{20}^2} \right| n_f(\beta_3) \right\rangle$$

$$\begin{bmatrix} \boldsymbol{\beta}_0 \end{bmatrix}_{eff} = -\frac{\beta_{20}}{\sqrt{4\pi}} \begin{bmatrix} 2[\beta_2]_e + [\beta_2^2]_{eff} + [\beta_3^2]_{eff} \end{bmatrix}$$

**Effective deformations are defined by collective nuclear wavefunctions** 

#### Towards odd nuclides

We have soft-rotator model for even-even actinides, but no appropriate nuclear model (describing softness) for odd-A ones...

- Nuclear softness collective effect, determined mainly by the even-even core, and varies smoothly from nucleus to nucleus
- $\langle \psi_{odd} | \beta | \psi_{odd} \rangle \approx \langle \psi_{core} | \beta | \psi_{core} \rangle$
- We may try to couple levels for bands built on singleparticle state same as in GS
- We need to build appropriate core states

#### Coupling scheme

238U

233U



Saturated coupling scheme: almost all low-lying levels are coupled (and described by SRM) Only a few bands coupled: those that correspond to vibrational excitation of the core and sp-wavefunction same as in GS (ENDSF)

# Regional potential for actinides: calculation algorithm

#### Exp. data



# OMP figure of merit: symmetrized total XS ratio for different nuclei

 $R(A,B) = \frac{1}{2}\frac{\sigma_A - \sigma_B}{\sigma_A + \sigma_B}$ 

Many other data is fitted: total XS, (in)elastic angular distributions, (p,n), strength functions and scattering radii

#### <sup>232</sup>Th to <sup>238</sup>U

<sup>233</sup>U to <sup>238</sup>U





#### Comparison with other potentials

CN XS changes up to 0.3 barn between models fitted to the same data

<sup>238</sup>U

233U

10<sup>2</sup>



#### Softness effects

- Multiband coupling (for bands, corresponding to collective excitations)
- Nucleus stretching due to rotation (centrifugal forces)
- Additional monopole coupling due to account of volume conservation in vibrating nucleus

### Multiband coupling 1: Direct level excitation XS

Other bands' impact is comparable to one from 2<sup>nd</sup>/3<sup>rd</sup> excited GS band level

238U





### Multiband coupling 2: CN XS change due to bands removal

#### Large impact of $\beta$ -vibrational states in the coupling scheme

<sup>238</sup>U

233U



#### Nucleus stretching: CN XS change

Nucleus stretching gives large impact even then only GS-band levels are coupled



#### Volume conservation: CN XS change



#### Summary

- Dispersive Lane-consistent coupled channels optical model is taken as a base
- Softness and multiband coupling are important to reach accurate CCOM calculations results for both even-even and odd-A nuclides
- We can build and use fully functional regional OMP for actinides, both even-even and odd!

### Software

All calculations performed by two FORTRAN codes which have been being developed by E. Soukhovitskii and coworkers for many years:

- optical model code OPTMAN (optical potential fitting, cross-section calculations) with dispersive corrections as discussed with Quesada, Capote, Chiba et al.
- nuclear structure code SHEMMAN (soft-rotator model parameters fitting and levels prediction)

#### **OPTMAN**

- recommended to use for SRM potentials compiled in the IAEA reference input parameter library (RIPL-3) for nuclear data evaluation
- used with the EMPIRE nuclear reaction model code for basic research and nuclear data evaluation (e.g. recent Fe-56 CIELO evaluation)

RIPL-3: Capote, R. et al., Nucl. Data Sheets 110, 3107–3214 (2009) OPTMAN and SHEMMAN: E. Sh. Sukhovitski et al., JAERI-Data/Code 2005-002 (2005) Dispersive corrections: Soukhovitski, E. Sh. et al, JAEA-Data/Code--2008-025 (2008) Soft description of Fe56: W. Sun et al, Nucl. Data Sheets 118, 191-194 (2014)

# Thank you for your attention!

### Core states assignment (<sup>233</sup>U states from ENSDF)



#### **GS** band

Core state: no vibrational excitation, only rotation

Core state: first octupole excitation, rotation

Band(H):  $K^{\pi} = 5/2^{-}$ :

#### Is softness important?

GS band levels energies deviate from rigid rotor level sequence for high spins due to nuclear stretching form centrifugal forces.

Soft-rotor model describes experimental energies and other bands as well.



#### Are other bands important?

No nucleon scattering data for other-than-GS band in EXFOR for actinides

but there are clear evidences of levels from <u>other bands</u> in some proton inelastic scattering experimental works

...





#### Outline

- Optical model and coupled channels basics
- Dispersion relations
- Lane consistency
- Multiband coupling
- SRM for "effective" deformations
- Odd-A approach
- Regional potential for actinides

### Approaches to effective deformations

## Effective deformations as fitting parameters

- Rough model to keep minimal number of parameters, only multiband coupling accounted (rigid rotor coupling within each band)
- Ambiguous description for nuclides with poor experimental data
- No additional knowledge needed

#### **Direct calculation**

- Nuclear structure model for soft deformed nuclei is needed
- More consistent result
- Gives all model effects

For even-even nuclides using SRM:

E.S. Soukhovitskiĩ et al, PRC 94 (2016) 64605

D. Martyanov et al, EPJ Web Conf. 146 (2017) 12031 (ND2016)

#### Recent dispersive OMP development

Dispersive Lane-consistent OMP for deformed nuclei (actinides):

- 2008 rigid rotor regional potential (RIPL 2408)
- 2015 parametric multiband coupling, rigid intra-band coupling; good description of even-even, but only spexcitations were used for odd-A nuclides (PRC 2016)
- 2016 soft rotor description of even-even nuclei (ND 2016)
- 2019 approach to soft odd-A nuclides: collective excitation of the core, not sp-states; detailed analysis of softness effects (ND 2019)

#### Towards other odd-A actinides

How to evaluate many important nuclides with no identified bands built on <u>only</u> vibrational excitation of the core (e.g. <sup>235</sup>U)?

- Make calculation with only GS band levels coupled, but using soft model – results should be more reliable than for rigid rotor (primary calculations are done for <sup>235</sup>U and <sup>239</sup>Pu)
- Use more sophisticated nuclear structure models to identify corresponding states
- Construct these states using evaluations of the core (corresponding even-even nucleus) excitations and correct level/spin sequence for an odd-A nuclide