28 International Seminar on Interaction of Neutrons with Nuclei Dubna, May 24 - 28, 2021

Intermediate Structure of the Fast Neutron Scattering by Spherical Nuclei

V.M. Skorkin

Institute for Nuclear Research Russian Academy of Sciences

An energy and isotopic structure of the neutron cross sections and the *p*-strength functions

An energy and isotopic intermediate structure of the cross sections was revealed in an elastic and inelastic fast neutron scattering by even-even nuclei with mass numbers $A \approx 60-130$

The average neutron cross sections and the strength functions of these nuclei is described within the two-phonon coupledchannel approach of a generalized optical model

The isotopic structure of the neutron total cross section and *p*-strength functions of middle nuclei

The generalized optical model description of the total cross sections (a) and *p*- strength function S_1 (b) in the near 3*p*-maximum of the neutron strength function

A cross section isotopic structure of fast neutron inelastic scattering by even-even nuclei

The data are presented at 300 keV energy above the excitation threshold of the single-phonon state 2+ of the nuclei. A cross section approximation is given optical model with 0+-2+-0+-2+-4+ coupled circuit of vibration states.

An energy structure of the experimental total and inelastic cross sections of the Se isotopes

The cross sections measured with resolution $\Delta E = 15 \text{ keV}$

The intermediate energy structure of the average cross sections of the selenium isotopes

The averaging energy of the cross sections is $\Delta E = 50 \text{ keV}$

The cross sections intermediate structure can be due to the coupling of the input channel with quasiparticle configurations of the particle-core system.

This is intensifies single-phonon coupling and produces intermediate resonance in the elastic and inelastic fast neutron scattering by nuclei

The isotopic structure of the $S_{1/2}$ and $S_{3/2}$ *p*-neutron strength functions of the spherical nuclei

Samosvat, G.S., Fiz. Elem. Chastits At. Yadra, 1986, v. 17, no. 4.

The $S_{1/2}$ and $S_{3/2}$ structure is caused by the spin-orbit splitting of the 3*p*-maximum of neutron strength function and a local fluctuation of the nuclear dynamic deformation

 $S_{1/2}$ and $S_{3/2}$ *p*-neutron strength functions are described by the two-phonon coupled-channel optical model with vibrational collective states 0+-2+-0+-2+-4+ and spin-orbit potentials 8 MeV

The calculated values of *p*-strength functions are close to the approximated experimental values

The calculated distance between maxima $S_{1/2}$ and $S_{3/2} \Delta A = 14$ (at $A_{1/2} = 111$ and $A_{3/2} = 97$) is close to the experimental value of the splitting of the 3*p*-maximum of strength function ($\Delta A = 12 \pm 4$)

The shift of the $S_{1/2}$ calculated maximum relative to the experimental position ($A \cong 107$) is caused by a local increase in the dynamic deformation of nuclei $S_{1/2}$ and $S_{3/2}$ description was obtained using a multiphonon variant of the coupled channel model. Samoilov, V.V. and Urin, M.G., *Yad. Fiz.*, 1990, v. 52.

The great value of a calculated strength functions splitting ($\Delta A = 17$) is explained by due to different dynamic deformation of the nucleus in excited states with different numbers of phonons.

The experimental spin–orbit splitting of the 3*p*-resonance was $\Delta A = 12 \pm 4$, more than twice that of bound single-particle states in the shell model $(\Delta A = 5-8)$.

This spin–orbit splitting of the *p*-neutron strength functions is determined also by local intensifies single-phonon coupling

In 3*p* nuclear region the *p*- wave neutrons makes the main contribution to neutron–nuclear interaction at an energy of about 1 MeV.

Direct excitation of first 2+-phonon states occurs mainly through inelastic scattering channels with $J^{\pi} = 1/2^{-}$ and $J^{\pi} = 3/2^{-}$

The cross section of the direct reaction is close to fluctuation cross-section for the inelastic scattering of neutrons with an energy of ~ 1 MeV

This is this is especially true for nuclei Ge, Se (A= 72-82) and Ru, Pd (A= 98-108) with large dynamic deformation (β_2 =0.2-0.3), which intensifies single-phonon coupling and produces intermediate resonances

A ratio of a direct and fluctuation cross sections for fast neutron inelastic scattering at 1 MeV

Direct excitation of first 2+-phonon states is close to fluctuation for nuclei Ge, Se (A=72-82) and Ru, Pd (A= 98-108) with dynamic deformation of 0.2-0.3, which intensifies single-phonon coupling

The density parameter of the single-particle states of an atomic nucleus near the Fermi surface

The high density of the single-particle states for Ge, Se and Ru, Pd nuclei

The differential cross sections approximating of elastic neutron scattering was developed earlier that uniquely defines five parameters of resonans and potential *s*-and *p*-wave scattering: radii (R_0 , R_1) and force functions (S_0 , $S_{1/2}$, $S_{3/2}$) Samosvat, G.S., *Fiz. Elem. Chastits At. Yadra*, 1986.

For parametrization of the cross sections in the approximation of isolated intermediate resonances, we used the average scattering matrix in the form.

$$< S_{c,c'} > = S_{c,c'}^{0} + e^{i(\delta_c + \delta_{c'})} \left[\delta_{cc'} + i \frac{\left(\Gamma_c^{\uparrow} \Gamma_{c'}^{\uparrow}\right)^{1/2} \Psi}{E_R - E - \frac{i}{2}\Gamma_R} \right]$$

$$\text{where } \Gamma_R = \Gamma_R^{\uparrow} + \Gamma_R^{\downarrow}$$

The intermediate resonance in the total and inelastic cross sections of the selenium isotops

The intermediate resonance in Se cross sections observed at a fast neutron energy E= 0.8, 1.0, 1.25, 1.5 MeV

Approximation of the intermediate structure of the total cross sections selenium-82

The total cross sections approximation with $\Delta E=15 \text{ keV}$ (a) and $\Delta E=50 \text{ keV}$ (b) by a doorway state model. Approximation of an energy structure in a angular distribution of the elastic cross sections of ⁸²Se

The averaged cross section analyzes for fast neutron elastic and inelastic scattering identified several intermediate resonances

Nº	cross sections	E _{R, keV}	$\Gamma_{R, keV}$	${\Gamma^{\uparrow}}_{R, keV}$	$\Psi_{\text{R, rad}}$
1	total	310	140	20	-3
2	total, elastic	510	60	20	0.35
3	total, elastic	660	58	32	-0.15
4	total, elastic, inelastic	790	50	10	-1
5	total, elastic, inelastic	920	20	8	1
6	total, elastic, inelastic	1000	120	60	0.2
7	total, inelastic	1120	50	35	-1
8	total, inelastic	1180	90	70	-3
9	inelastic	1250	50		
10	inelastic	1500	100		

The contribution of intermediate resonances to the *p*-neutron strength function is about 50%.

THANK YOU!