

National University of Mongolia NUCLEAR RESEARCH CENTER

Systematical Analysis of (n,2n) Reaction Cross Sections for 14 – 15 MeV Neutrons

<u>Ch.Saikhanbayar</u>¹, G.Khuukhenkhuu¹ and M.Odsuren^{1,2}

¹Nuclear Research Center, National University of Mongolia, Ulaanbaatar, Mongolia

²School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia

Yu.M.Gledenov³ and E.Sansarbayar³

³Frank Laboratory of Neutron Physics, JINR, Dubna, Russia

Guohui Zhang⁴

⁴State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing, China

ISINN-28, International Online Seminar, May 24-28, 2021.

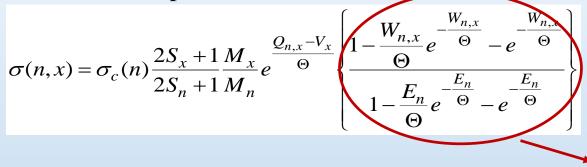
Ulaanbaatar, 2021

Contents

- Introduction
- Statistical model formulae
- Systematical analysis of (n,2n) reaction cross sections
- Discussions
- Conclusions

Introduction

- Fast neutron induced nuclear reaction cross section data are necessary for both nuclear energy technology and the understanding of fundamental nuclear physics problems.
 - ≻ Radioactive nuclides produced in the reactor usually have short half-life.
 - ➢ So, direct measurement of their neutron cross sections is difficult. Therefore, model formulae are important to predict these cross sections theoretically.
- Biomedical applications such as production of radioisotopes and cancer therapy: ¹⁰⁰Mo(n,2n)⁹⁹Mo
- Accelerator driven transmutation of the long-lived radioactive nuclear wastes to short lived or stable isotopes
- Material irradiation experiments concerning research and development for fusion reactor technology.
- Study on the existence of Dineutron.


Introduction

The purpose of this work:

- In this work, in the framework of the statistical model we deduced some theoretical formulae for the (n,2n) cross section using the evaporation model, constant nuclear temperature approximation and Weizsäker's formula for binding energy.
- Known experimental data of the (n,2n) cross sections at 14 15 MeV neutrons are analyzed with the help of the obtained formulae.

Statistical Model formulae

In the framework of the statistical model based on the Bohr's assumption of a compound mechanism the cross section formula for (n,x) reaction is expressed as:

G.Khuukhenkhuu et al. J NUCL SCI TECHNOL, Supp. 2, Vol. 1, 2001, pp. 782-784.

Following formula, which is similar to Cuzzocrea's et al. and Ericson's formulas, is obtained:

$$\sigma(n,2n) = \sigma_{c}(n) \frac{2S_{2n} + 1}{2S_{n} + 1} \frac{M_{2n}}{M_{n}} e^{\frac{Q_{n,2n} - V_{2n}}{\Theta}}$$

Here: $\sigma_c(n)$ is the compound nucleus formation cross section;

 S_n and S_{2n} are the spin of the incident neutron and emitted 2n respectively;

 M_n and M_{2n} are the masses of the neutron and 2n respectively;

 $Q_{n,2n}$ is the reaction energy;

 V_{2n} is the Coulomb potential for 2n;

 Θ is the thermodynamic temperature;

 $\sigma_c(n) = \pi (R + \lambda_n)^2$

Here: *R* is the radius of the target nucleus; λ_n is the wavelength of the incident neutron divided by 2π .

Statistical Model formulae

The Coulomb potential for neutrons $V_{2n} = 0$. So, taking into account the spin and mass of neutrons from the formula (2) we get:

$$\sigma(n,2n) = 4\pi (R + \lambda_n)^2 e^{\frac{Q_{n,2n}}{\Theta}}$$

Using the Weizsäker's formula for binding energy we can obtain following expressions for the target and residual nuclei:

$$E_{i} = \alpha A - \beta A^{2/3} - \gamma \frac{Z^{2}}{A^{1/3}} - \xi \frac{(N-Z)^{2}}{A} \pm \frac{\delta_{i}}{A^{3/4}}$$

Reaction energy: $Q_{n2n} = E_f - E_i$

$$E_{f} = \alpha (A-1) - \beta (A-1)^{2/3} - \gamma \frac{Z^{2}}{(A-1)^{1/3}} - \xi \frac{(N-1-Z)^{2}}{A-1} \pm \frac{\delta_{f}}{(A-1)^{3/4}}$$

(n,2n) cross section formula:

$$\sigma(n,2n) = 4\pi (R + \lambda_n)^2 \exp\left\{\frac{-\alpha - \beta \left((A-1)^{\frac{2}{3}} - A^{\frac{2}{3}}\right) - \gamma \left(\frac{Z^2}{(A-1)^{\frac{1}{3}}} - \frac{Z^2}{A^{\frac{1}{3}}}\right) - \xi \left(1 - \frac{4Z^2}{A(A-1)}\right) \pm \frac{\delta_f}{(A-1)^{\frac{3}{4}}} \mp \frac{\delta_i}{A^{\frac{3}{4}}}\right\}}{\Theta}\right\}$$

ISINN-28 online seminar, May 27, 2021.

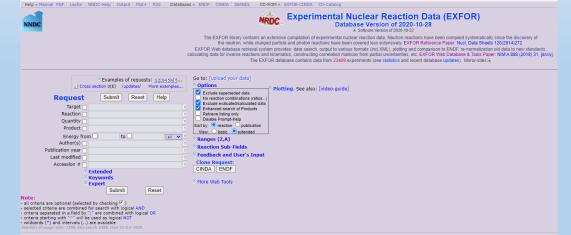
Statistical Model formulae

In the case of A >> 1 can be obtain the following formulae for systematical analysis of the (n,2n) cross sections:

$$\frac{\sigma(n,2n)}{\pi(R+\lambda_n)^2} = C\exp(-K\frac{Z^2}{A^2})$$

Here: *Z* and *A* are proton and mass numbers of the target nuclei; The parameters *K* and *C* are expressed as:

$$K = \frac{4\xi}{\Theta}$$


$$C = 4 \exp\left\{\frac{-\alpha - \beta \left((A-1)^{\frac{2}{3}} - A^{\frac{2}{3}}\right) - \gamma \left(\frac{Z^{2}}{(A-1)^{\frac{1}{3}}} - \frac{Z^{2}}{A^{\frac{1}{3}}}\right) \pm \frac{\delta_{f}}{(A-1)^{\frac{3}{4}}} \mp \frac{\delta_{i}}{A^{\frac{3}{4}}} + \xi}{\Theta}\right\}$$

Systematical analysis of (n,2n) reaction cross sections

In this paper the library of neutron cross sections known as EXFOR, IAEA. We've analyzed 147 experimental (n,2n) cross section data at the neutron energy of 14 - 15 MeV from EXFOR.

Target nuclei	А	N	Z	E, (MeV)	σ(n,2n) (mb)	Δσ(n,2n) (mb)	Authors
Li	6	3	3	14.06	78.1	4.1	Mather et al. (1969)
Li	7	4	3	14.06	49.7	3.2	Mather et al. (1969)
Be	9	5	4	14.1	478	14	Takahashi et al. (1987)
В	11	6	5	14.06	19	4	Mather et al. (1969)
С	12	6	6	14.1	6	6	Ashby et al. (1958)
С	13	7	6	14.28	255	25	Frehaut et al. (1978)
Ν	14	7	7	14.64	7.28	0.29	Sakane et al. (2001)
F	19	10	9	14.69	50.4	2.7	Ikeda et al. (1988)
Na	23	12	11	14.87	41.7	0.9	Hanlin et al. (1992)
A1	27	14	13	14.09	7.8	0.5	Wallner et al. (2003)
Р	31	16	15	14.64	13.2	0.71	Sakane et al. (2001)
C1	35	18	17	14.57	10.28	0.8	Molla et al. (1997)
K	39	20	19	14.66	4.55	0.25	Filatenkov (2016)
Ca	40	20	20	14.69	8	2	Braun et al. (1968)
Ca	48	28	20	14.7	850	35	Anders et al. (1985)
Sc	45	24	21	14.8	320	24	J.Luo et al. (2013)
Ti	46	24	22	14.72	42	2.3	Ikeda et al. (1998)
V	50	27	23	14.3	258	39	Greenwood et al. (1992)
Cr	50	26	24	14.6	21.2	1.2	Ribansky et al. (1985)
Cr	52	28	24	14.47	351	14.49	Mannhart et al. (2007)
Mn	55	30	25	14.58	812.9	28.9	Hanlin et al. (1980)
Fe	54	28	26	14.64	9	1.8	Sakane et al. (2001) Vate VVII
Fe	56	30	26	14.82	545.4	27.3	Wallner et al. (2011) Settings to

https://www-nds.iaea.org/exfor/

Database Manager: Viktor Zerkin, NDS, International Atomic Energy Agency (V.Zerkin@iaea.org) Web and Database Programming: Viktor Zerkin, NDS, International Atomic Energy Agency (V.Zerkin@iaea.org) 2020-10-22 Data Source: Network of Nuclear Reaction Data Centres (NRDC)

Hg	196	116	80	14.68	2220	170	Kasugai et al. (2001)
Hg	198	118	80	14.68	2060	130	Kasugai et al. (2001)
Hg	204	124	80	14.68	2140	100	Kasugai et al. (2001)
T1	203	122	81	14.7	1970	110	Kiraly et al. (2001)
T1	205	124	81	14.76	1895	143	Frehaut et al. (1980)
Pb	204	122	82	14.5	2161	172.45	Filatenkov (2016)
Pb	206	124	82	14.76	2028	155	Frehaut et al. (1980)
Pb	207	125	82	14.76	1976	161	Frehaut et al. (1980)
Pb	208	126	82	14.1	2380	140	Simakov et al. (1992)
Bi	209	126	83	14.74	2293	371.47	Filatenkov (2016)
Th	232	142	90	14.7	1177	78.86	Chatani et al. (1991)
ISUNN	2880	hl i qe s	sengozin	ar, 1 1/6a y	27,7 230 21.	58	Raics et al. (1990)

← → C

www-nds.iaea.org

Systematical analysis of (n,2n) reaction cross sections

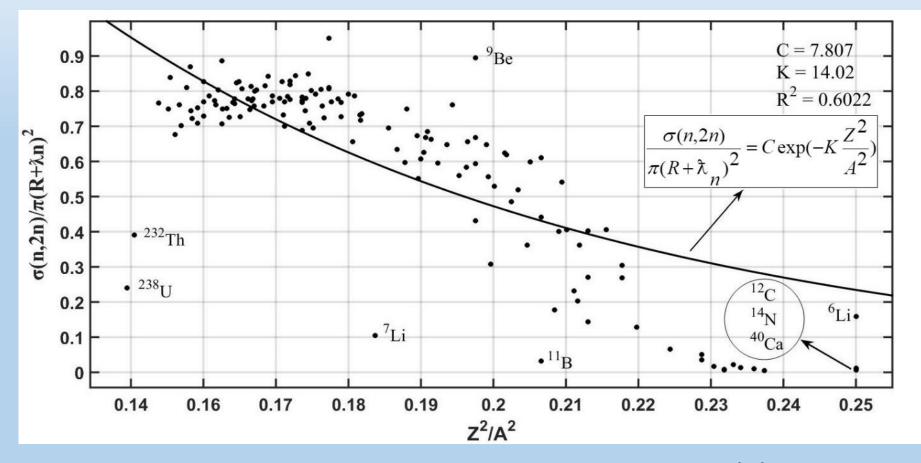


Figure 1. The dependence of the reduced (n,2n) cross sections on parameter Z^2/A^2

Discussions

197

A total cross section for fast neutrons can be approximated as following:

$$\sigma_{n}^{tot} = \sigma^{tot}(n,2n) + \sigma^{tot}(n,\gamma) + \sigma^{tot}(n,\alpha) + \sigma^{tot}(n,p) + \sigma^{tot}(n,n) + \dots \approx \sigma^{tot}(n,3n) + \dots \approx \sigma^{tot}(n,2n) \approx \pi (R + \lambda_{n})^{2}.$$
⁹⁷Au:
$$\sigma_{n}^{tot} = \frac{\sigma^{tot}(n,2n)}{2154mb} + \frac{\sigma^{tot}(n,\gamma)}{1.1mb} + \frac{\sigma^{tot}(n,\alpha)}{2.2mb} + \frac{\sigma^{tot}(n,3n)}{61mb} + \dots$$
¹²⁷I:
$$\sigma_{n}^{tot} = \frac{\sigma^{tot}(n,2n)}{1655mb} + \frac{\sigma^{tot}(n,\gamma)}{1.12mb} + \frac{\sigma^{tot}(n,\beta)}{11.7mb} + \frac{\sigma^{tot}(n,3n)}{38.5mb} + \dots$$

if we take into account the pre-equilibrium and direct mechanisms the total (n,2n) cross section can be obtained as follows:

$$\sigma_n^{tot} \approx \sigma^{tot}(n,2n) \approx \pi (R + \lambda_n)^2 \approx \sigma^{comp}(n,2n) + \sigma^{pre}(n,2n) + \sigma^{dir}(n,2n)$$

 $\sigma^{nonstat}(n,2n) = \sigma^{pre}(n,2n) + \sigma^{dir}(n,2n)$

$$\sigma^{nonstat}(n,2n) = \sigma^{tot}(n,2n) - \sigma^{comp}(n,2n) = \pi (R + \lambda_n)^2 - C\pi (R + \lambda_n)^2 \exp(-K\frac{Z^2}{A^2}) = \pi (R + \lambda_n)^2 \left(1 - C\exp(-K\frac{Z^2}{A^2})\right).$$

The reduced (n,2n) cross section is expressed as:

ISINN-28 online seminar, May 27, 2021.

$$\frac{\sigma^{nonstat}(n,2n)}{\pi (R+\lambda_n)^2} = \left(1 - C\exp(-K\frac{Z^2}{A^2})\right).$$

10

Discussions

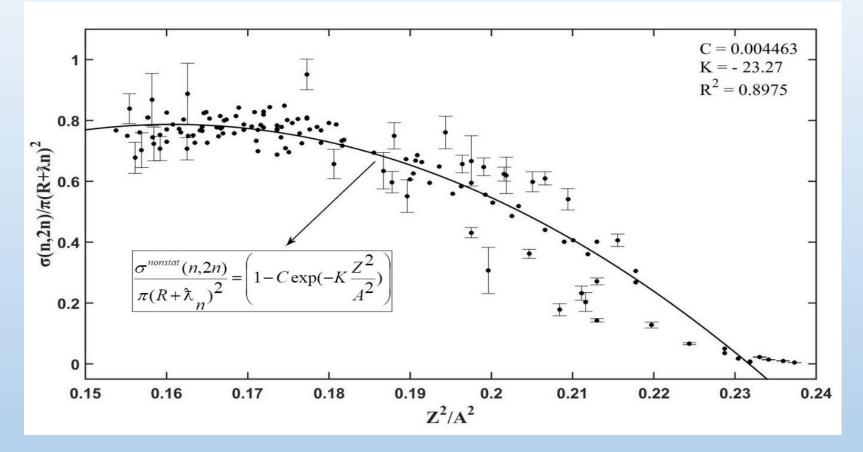


Figure 2. The dependence of the reduced (n,2n) cross sections on parameter Z^2/A^2

The very heavy nuclei such as ²³⁸U, ²³²Th and very light nuclei ^{6,7}Li, ⁹Be, ¹¹B, ¹²C, ¹⁴N are excluded from the consideration. Also, double magic nucleus ⁴⁰Ca is not considered.

Conclusions

- 1. In the framework of the statistical model a theoretical formula for the (n,2n) reaction cross section was deduced. In addition, a non-statistical share of the total neutron cross section was obtained.
- 2. Known experimental data of the (n,2n) cross sections for 14 15 MeV neutrons were analyzed using the obtained formulae. It was shown that the non-statistical share of the total cross section is in agreement with experimental data.

Thank you for your attention

ISINN-28 online seminar, May 27, 2021.