

A new experimental approach to search for free neutron-antineutron oscillations, based on coherent neutron and antineutron mirror reflection

V. Gudkov, E.A. Kupriyanova, D. Milstead, V.V. Nesvizhevsky, K.V. Protasov, V. Santoro, W.M. Snow, A.Y. Voronin

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

- V.V.N.,V.G.,K.V.P.,W.M.S.,A.Y.V., "Experimental approach to search for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflection", Phys. Rev. Lett. 122 (2019) 221802;
- V.V.N.,V.G.,K.V.P.,W.M.S.,A.Y.V., "A new operating mode in experiments searching for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflections", Europ. Phys. J. Web. Conf. 191 (2018) 01005;
- V.V.N., V.G., K.V.P., W.M.S., A.Y.V., "Comment on B.O. Kerbikov "The effect of collisions with the wall on neutron-antineutron transitions" Phys. Lett. B 795 (2019) 362", Phys. Lett. B 803 (2020) 135357
- V.G.,V.V.N.,K.V.P.,W.M.S.,A.Y.V., "A new approach to search for free neutron-antineutron oscillations using coherent neutron propagation in gas", Phys. Lett. B 808 (2020) 135636
 - K.V.P.,V.G.,E.A.K.,V.V.N.,W.M.S.,A.Y.V., "Theoretical analysis of antineutronnucleus data needed for antineutron mirrors in neutron-antineutron oscillation experiments", Phys. Rev. D 102 (2020) 075025

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Neutron-antineutron oscillations

$n-\bar{n}$ $\Delta B = 2$

An observation of neutron-antineutron oscillations, which violate both Baryon and Baryon-Lepton conservation, would constitute a scientific discovery of fundamental importance to physics and cosmology.

A stringent **upper bound** on its transition rate would make an important contribution to our understanding of the Baryon asymmetry of the universe by eliminating the **post-sphaleron baryogenesis** scenario in the light quark sector.

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

$(t\Delta E/\hbar) < 1$

- 1. n n oscillations in the so-called **quasi-free** limit with no suppression by external fields (magnetic fields, residual gases, wall reflection etc), thus oscillation probability is proportional to the square of the observation time);
- 2. $n \overline{n}$ oscillations in nuclei (much larger number of neutrons available but much shorter observation times because of the suppression of oscillations by strong nuclei fields).

$$\binom{|n_1\rangle}{|n_1\rangle} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \binom{|n\rangle}{|\bar{n}\rangle}$$

with

$$\tan(2\theta) = \frac{2\varepsilon}{(2\vec{\mu_n} \cdot \vec{B} - V_n + V_{\bar{n}})}.$$

In any case, the **appearance of antineutrons** would be the signature of this process.

At present, both methods provide comparable constraints for the characteristic oscillation time equal to $\sim 10^8$ sec (nuclei constraints are better but model-dependent).

We propose a **new method**, which combines somehow advantages of the two methods (the knowledge of nuclear suppression of oscillations and (quasi)-model-free interpretation of results) and can provide an improvement in the sensitivity of 4 orders of magnitude in terms of the oscillation probability.

A development of the quasi-free-neutron method: cold neutrons are allowed to bounce from the neutron guide walls. An antineutron would travel along the same trajectory, without annihilating and/or loosing coherence of the two states, for extended periods of time.

Analogy to the proposed earlier experiments with ultracold neutrons [M.V. Kazarnovski et al, JETP Lett. 32 (1980) 82; K.G. Chetyrkin et al, Phys. Lett. B 99 (1981) 358; H. Yoshiki, R. Golub, Nucl. Phys. A 501 (1989) 869] but those proposals did not consider coherence of neutrons and antineutrons at reflection, or did not identified conditions at which coherence is maintained.

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

The new concept

We:

- Extend this approach to higher neutron energies, thus largely increasing statistics and experiment sensitivity,
- Point out conditions for suppressing the **phase difference** for neutrons and antineutrons at reflection,
- Underline the importance of setting low transverse momenta of neutrons,
- and making certain choices for the nuclei composing the guide material.

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Advantages of the new concept

For the same installation length, advantages include

- Smaller transversal sizes,
- Lower costs,
 - Larger statistics (higher accuracy) (one can use VCNs).

For a larger length,

the gain in sensitivity, in terms of the oscillation probability, increases quadratically with length (and still a large reductions of costs).

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Advantages of the new concept

Our proposal is based on:

1. Standard quantum mechanics (mainly),

and

2. Some knowledge of antineutron-nuclei scattering lengths (this is important to a smaller extend, especially for short observation times)

Crucial parameters for the analysis of this problem are:

- The probability of neutron and antineutron reflection per wall collision, ρ_n and $\rho_{\bar{n}}$,
- The difference of phase shifts of the wave function per wall collision, $\Delta \varphi_{n\overline{n}} = \varphi_n \varphi_{\overline{n}}$.

They depend on:

- The optical potential for neutrons $U_n = V_n + iW_n$, and
- The optical potential for antineutrons $U_{\overline{n}} = V_{\overline{n}} + iW_{\overline{n}}$.

In order to optimize the **sensitivity** of neutron-antineutron searches and simultaneously to decrease the **impact** of theoretical uncertainties, we will use the following limit:

 $e \ll V_n, e \ll V_{\overline{n}}, e \sim W_{\overline{n}}, W_n \ll V_n, W_{\overline{n}} \ll V_{\overline{n}}, W_n \ll W_{\overline{n}}, with e$ the energy of transversal neutron motion. Then, for the probabilities: $\rho_n = 1$ and $1 - \rho_{\overline{n}} \approx \frac{2kk_{\overline{n}}}{(k_{\overline{n}}')^2}$, with

 $k'_{\overline{n}} \approx \sqrt{2mV_{\overline{n}}}$ and $k''_{\overline{n}} \approx \sqrt{m\left(\frac{W_{\overline{n}}^2}{2V_{\overline{n}}}\right)}$ and for the phase shift: $\Delta \varphi_{n\overline{n}} \approx \frac{2k}{k_n k'_{\overline{n}}} (k_n - k'_{\overline{n}})$

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Imagine two upstream sections a two-dimensional ballistic neutron guide (with a cross-section increasing from h by d to H by D). Typical cross-sections are $hd \sim 10^2$ cm², $HD \sim 10^4$ cm², respectively. In according with Liouville theorem, tangential velocity components would decrease from $\sim 2v_{crit}^{Ni}$ to $|v_{hor}| < 2v_{crit}^{Ni} \frac{d}{D}$ and $|v_{vert}| < \sqrt[3]{4hv_{crit}^{Ni}g}$.

Antineutron-nuclei scattering lengths

A State

 $b_{\overline{n}A} \sim 1.54 \sqrt[3]{A} - i$

Element	$b_{\bar{n}A}$ [fm]	$U_{\bar{n}}$ [neV]	$\tau_{\bar{n}}$ [s]
С	3.5 - i	103-i29	1.7
Mg	3.5 - i	39 - i11	1.0
Si	3.7 - i	48 - i13	1.2
Ni	4.7 - i	111-i24	2.3
\mathbf{Cu}	4.7 - i	104-i22	2.2
Zr	5.3 - i	59 - i11	1.8
Mo	5.3 - i	89 - i16	2.3
W	6.5 - i	106-i16	3.0
РЬ	6.7 - i	57 - i8.6	2.3
Bi	6.7 - i	49 - i7	2.1

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

26.05.21

Phase-shift times (W184+186)

Then,
$$\tau_{hor}^{\Delta\varphi,\overline{n}} = \frac{D}{|v_{hor}|} \cdot \frac{\sqrt{V_n V_{\overline{n}}}}{2\sqrt{\overline{e_{hor}}}(\sqrt{V_n} - \sqrt{V_{\overline{n}}})} \sim 32 s$$
 and
 $\tau_{vert}^{\Delta\varphi,\overline{n}} = \frac{|v_{vert}|}{g} \frac{\sqrt{V_n V_{\overline{n}}}}{\sqrt{\overline{e_{vert}}}(\sqrt{V_n} - \sqrt{V_{\overline{n}}})} \sim 7.3 s$

Note, however, that a factor $\left(\left(\sqrt{V_n} - \sqrt{V_{\overline{n}}}\right) \rightarrow 0\right)$ can allow to largely increase these characteristic times by proper mixing of two isotopes/elements for the guide wall material if needed.

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Annihilation times (W184+186)

 $\tau_{hor}^{\rho,\overline{n}} = \frac{D}{|\overline{v_{hor}}|} \frac{(V_n)^{3/2}}{W_{\overline{n}}\sqrt{\overline{e_{hor}}}} \sim 15 \, s,$

$$\tau_{vert}^{\rho,\overline{n}} = \frac{2\overline{|v_{vert}|}}{g} \frac{(V_n)^{3/2}}{W_{\overline{n}}\sqrt{\overline{e_{vert}}}} \sim 3.1 \, s.$$

$\tau_{vert}^{\rho,\overline{n}}$ is THE real limitation of this method.

Even in the limit of "zero" vertical velocities, this estimation will not significantly change.

You can improve this value by using a "parabolic" neutron guide but not much.

- A small-scale experiment: PF1B facility at ILL: neutron flux of 10¹⁰ n/cm2/s, guide cross section 6x20 cm2, flight length 65 m, annihilation detector active area 0.5 x 0.5 m2, experiment duration 1 year: an improvement of >10¹ over the best existing limit;
- A middle-scale experiment: future ESS cold neutron guide, flight length 200-300m: an improvement of ~10³ over the best existing limit;
- An optimized experiment, in particular using a dedicated source of VCNs or a large guide length would bring an improvement of >10⁴ over the best existing limit.

Systematical uncertainties

An uncertainty can be associated with the fact that the interaction of slow antineutrons with nuclei has not been measured, and theoretical models contain uncertainties.

-for **PF1B**, the time of flight is 0.05 s, much shorter than antineutron storage times of a few seconds, thus this uncertainty is **negligible** even with very poor knowledge of antineutron-nuclei scattering lengths,

-for ESS, the time of flight is 0.4 s, $\tau_{\bar{n}}/\tau_{obs} \sim 5$.

 $\Delta Im b_{\bar{n}A}/Im b_{\bar{n}A} = \Delta Im a_{\bar{n}A}/Im a_{\bar{n}A} \sim 0.1$ and the systematic error in estimating the oscillation time is as small as 0.5%.

- For an experiment with long observation time and optimized statistical sensitivity, the systematic uncertainty would increase and should be studied in each case.

26.05.21

INSTITUT MAX VON LAUE - PAUL LANGEVIN

- Neutronic calculations and optimizations (neutron production, extraction, softer spectrum? broader transverse velocities?);
- Antineutronic calculations and optimization (using theoretically estimated antineutron scattering lengths);
- Experimental measurements of antiproton scattering lengths for the selected nuclei(isotopes) for the neutron/antineutron guide;
- "Fine tuning" of parameters of the system and conservative estimations of the sensitivity. An experiment at PF1B might be the closest and simplest goal.