Measurement of Fission Cross Section and Angular Distributions of Fission Fragments from Neutron-Induced Fission of ²⁴³Am in the Energy Range 1-500 MeV

<u>A.M. Gagarski</u>¹, A.S. Vorobyev¹, O.A. Shcherbakov¹, L.A. Vaishnene¹, A.L. Barabanov^{2,3,4}, T.E. Kuz'mina⁵

¹ B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Gatchina, Russia;

² National Research Centre "Kurchatov Institute", Moscow, Russia;
³ National Research Nuclear University "MEPhI", 115409, Moscow, Russia;
⁴ Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia;
⁵ V.G. Khlopin Radium Institute, St.-Petersburg, Russia

Fission cross sections and angular distributions of fission fragments from the neutroninduced fission of ²⁴³Am have been measured in the energy range 1–500 MeV at the neutron time-of-flight spectrometer GNEIS based on the 1-GeV proton synchrocyclotron of the NRC KI - PNPI (Gatchina) used as pulsed neutron source. The description of the original experimental set-up consisted of two MWPC counters with targets of ²⁴³Am and ²³⁵U is given, as well as the some principal details of experimental data processing.

The fission cross section of 243 Am was obtained by ratio method using 235 U as a standard. The anisotropy of fission fragments $W(0^{\circ})/W(90^{\circ})$ was deduced from the experimental data on angular distributions of 243 Am. The anisotropy data are of particular interest because in the investigated energy range 1–500 MeV other experimental data are practically absent, despite the ever-growing interest in this field, stimulated by the creation of new nuclear technologies. This work is a part of the program dedicated to investigations of neutron-induced fission at intermediate energies.