PRODUCTION OF MOLECULAR HYDROGEN (AN ENVIRONMENTALLY FRIENDLY FUEL) BY THE INTERACTION OF γ-RAYS WITH THE BeO/H₂O SYSTEM

Y.D. Jafarov, N.K. Abbasova

Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku AZ-1143, Azerbaijan

Conducted studies showed that radiation-chemical yield of molecular hydrogen, under radiation-catalytic influence by γ -quanta on some metals or metal oxides, especially beryllium and beryllium oxide, in contact with water, is much higher. We investigated the radiation-chemical yield of molecular hydrogen obtained by the radiation-heterogeneous transformation of water under the influence of gamma rays (⁶⁰Co, P=18.17 rad/sec, T=300K) on beryllium oxide system with particle sizes d< 4 µm, 32–53 µm and 75–106 µm + adsorbed water and by suspending particles in water. Table compares experimental and model values of the energy yield of molecular hydrogen obtained during the radiolysis of water adsorbed (θ =4) on BeO surface with particle size of d< 4 µm, d=32–53, 75–106 µm.

Table

Comparison of values obtained from experimental and model-based calculations of molecular hydrogen energy yields in the BeO+H₂O system

$d < 4 \ \mu m$	32–53µm	75–106 µm	$G_n(h^+-e^-)$	$G_n(L_{1v})$	$G_n(H_2)$
Energy yield of H ₂ , G _t (H ₂) molecule/(100 eV)			Values based on the model		
6.4	3.81	2.8	9.1–4.23	3.89–0.9	6.5–2.57

The maximum radiation-chemical yield of molecular hydrogen obtained from the radiation-catalytic decomposition of water in systems BeO/H₂O with particle sizes d< 4 μ m, d=32–53 and 75–106 μ m (θ =4) under the γ -quanta influence are G(H₂)=6.4; 3.81 and 1.83 molecule/100 eV accordingly. The acquisition of molecular hydrogen is explained according to the recombination and exciton mechanism, which corresponds to the theoretical values (G_n(H₂)=6.5–2.57).