Measurement of the ¹²⁴Xe(n, p)¹²⁴I Reaction Cross Section Induced by 14.8 MeV Neutron

Liang Jianfeng¹, Xie Feng¹, Shi Quanlin¹, Bao Jie², Ruan Xichao², Guan Qingdi¹, Jiang Wengang¹, Wang Chunjie¹

¹ Northwest Institute of Nuclear Technology, Xi'an 710024, China ² Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China)

Abstract

The measurement of (n,p) reaction cross section induced by fast neutron plays an important role in nuclear reaction mechanism research and nuclear technology applications. Measurement of the ¹²⁴Xe(n,p)¹²⁴I reaction cross section at 14.8 MeV neutron has been performed by the activation method. Quasi monoenergetic neutron beams were produced at the Cock-croft Walton Accelerator of China Institute of Atomic Energy, by the T(d, n)4He reaction. A cell made of quartz was used as the container of ¹²⁴Xe (99.95% abundance) gas, and the mass of ¹²⁴Xe in cell was determined by weighing method. Two high-purity thin ⁹³Nb foils were attached to the cell and performed as monitors of the neutron flux determination by ⁹³Nb(n,2n)^{92m}Nb reaction. After irradiation, the activities of ¹²⁴I and ^{92m}Nb were measured off-line by HPGe gamma-ray spectroscopy calibrated with different activity standard sources. As a result, the cross section induced by 14.8±0.2 MeV neutrons has been deduced to be 43.9±2.2 mb, and the result was compared with the literature data and evaluations.