Neutron Detector Based on SiPM and CLYC

Xiaodong Zhang¹, Xiufeng Weng¹, Xiao Liu¹, Yanli chen¹, Xinjian Tan¹, Liang Sheng¹, Xianpeng Zhang¹, Jingtao Xia¹, Guoqiang Zeng², Qiang Li², Hongqiao Yin¹

¹National Key Laboratory of Intense Pulsed Radiation Simulation and Effect Northwest Institute of Nuclear Technology), Xi'an 710024, China ²Chengdu University of Technology, Chengdu 610059, China

Abstract

The potassium cryolite crystal CLYC (molecular formula Cs₂LiYCl₆) is a new kind of inorganic scintillator widely used in recent years. The CLYC contains ⁶Li and ³⁵Cl, respectively, which have large cross section with thermal neutrons and fast neutrons, the nuclides ⁸⁹Y and ¹³³Cs that are high atomic number, and its density is high, so it has high detection efficiency for thermal neutrons, fast neutrons and gamma rays, and also has pulse shape ability for neutrons and gamma rays. Silicon photomultiplier (SiPM) is a new type of high performance semiconductor photodetector, which is composed of arrays of multiple pixels working in Geiger mode in parallel with each other. Each pixel consists of a series of avalanche photodiodes and quenching resistors. SiPM is characterized by its spectral response range from near ultraviolet to near infrared, high photon detection efficiency and fast time response, as well as insensitive to magnetic field, low operating voltage and compact volume. Therefore, the detector based on SiPM and CLYC will have the obvious advantages of high efficiency and convenient use in ray detection and particle discrimination.

Keywords: SiPM, CLYC, neutron detector, pulse shape discrimination