^{236s}Np isomer yields in ²³⁷Np(n,2n) and ²³⁸U(p,3n) reactions

V. M. Maslov¹

¹Slobodskoy proezd 4, 220025 Minsk, Byelorussia

Modeling $r(E_n)$, ratio of the yields of short-lived (1⁻) and long-lived (6⁻) of ²³⁷Np(*n*,2*n*) reaction from threshold energy up to 20 MeV allowed to infer also the yield of the short-lived state ^{236s}Np in ²³⁸U(*p*,3*n*) reaction (Fig. 1). The different initial spin populations is probed in (*p*,3*n*) and (*n*,2*n*) reactions. The consistent description of the data base on cross sections of fission ²³⁷Np(*n*,*F*), ²³⁷Np(*n*,2*n*)^{236s}Np (Fig. 2) and ²³⁸U(*p*,*F*), ²³⁸U(*p*,*n*) and ²³⁸U(*p*,3*n*)^{236s}Np is achieved. The branching ratio $r(E_n)$ obtained by modeling the residual nuclide ²³⁶Np levels. Excited levels of ²³⁶Np are modeled using predicted Gallher-Moshkowski doublets. The branching ratio $r(E_n)$ is defined by the ratio of the populations of the two lowest states, isomer ^{236s}Np, with spin *J*=1 and ground state ^{236l}Np with spin *J*=6. The $r(E_n)$ and $r(E_p)$ have similar shapes in case of (*n*,2*n*) and (*p*,3*n*) reactions, which is due to compensation of differing angular momentum and excitation energy distributions of ²³⁶Np yields. The populations of ^{236s}Np and ^{236l}Np states defined by the γ -decay of the excited states of ²³⁶Np in the continuum. The exclusive spectra of (*n*,*xnf*) and (*n*,2*n*)^{1,2} and (*p*,*xnf*) and (*p*,3*n*)^{1,2,3} influence $r(E_n)$ at higher energies and prompt fission neutron spectra.

Fig. 1 Relative yield of long-lived (6⁻) 2361 Np state in 237 Np(*n*,2*n*) 2361 Np reaction.

Fig.2 Cross sections of ${}^{237}Np(n,2n)$, ${}^{237}Np(n,2n){}^{236s}Np$ and ${}^{237}Np(n,2n)$ and ${}^{238}U(p,3n)$ reactions.