

Angular distribution of prompt fission γ-rays

May 29th - June 2nd, 2023, ISINN-29 Senior Researcher, FLNP JINR, PhD, Berikov Daniyar

Angular distribution of prompt fission γ-rays

- [1] M. V. Blinov et al., Soviet Phys. JETP 16 (1963) 1159
- [2] S. S. Kapoor and R. Ramanna, Phys. Rev. 133 (1964) B598
- [3] M. Hoffman, Phys.Rev, 133, B714 (1964)
- [4] G. A. Petrov, Soviet Phys. JETP 20 (1965) 1387
- [5] K. Skarsvàg, Nucl. Phys. A 96 (1967) 385.

[6] G.V. Valsky, A.M. Gagarski et al., Bull. Russ. Acad. Sci. Phys. 74 (2010) 767

$$A = (W(0^{\circ}) - W(90^{\circ}))/W(0^{\circ})$$

For the fission of 235 U the value of A is in the range of 12-16 %

Anisotropy coefficient A

ROT-effect

D. Berikov, G. Ahmadov, Yu. Kopatch, A. Gagarski et al., Phys. Rev. C 104 (2021) 024607

Experimental setup

D. Berikov, V. Hutanu, Yu. Kopatch et al., J. Instrum. 15 (2020) P01014

Time-of-flight spectrum of one of the stop detectors

Results

$$N(\theta) \sim 1 + A \cdot \cos^2 \theta$$

D. Berikov, G. Ahmadov et al., Eurasian J. Phys. Funct. Mater. 4, 114 (2020).

Angular distribution of prompt gamma-rays in binary fission ²³⁵U

Comparison of results

Conclusion

- The angular distribution of prompt γ-rays from the fission of ²³⁵U was measured using a beam of monochromatic neutrons with an energy of 60 meV
- The resulting angular distribution was corrected for the thresholds of the detectors. The coefficients associated with the threshold of each detector were found by analyzing data from all possible combinations of stop and gamma detectors separately.
- The value of the anisotropy was found A = 0.1570 ± 0.0053 .
- It is shown that the obtained values of the anisotropy A will be used to study the ROT-effect.

Thank you!