

Measurement of cross sections for nuclear reactions of interaction of protons and deuterons with lithium at ion energies 0.4 - 2.2 MeV

Marina Bikchurina, PhD student, Budker INP Scientific supervisor: Prof. Sergey Taskaev

I. Scheme of High flux neutron source

The VITA is used to provide dc proton/deuteron beam with an energy within a range of **0.3–2.3 MeV** with current from **1 nA to 10 mA**. The target is a copper disk with a thin layer of crystalline density lithium was thermal

Bunker 2

 -insulated tandem accelerator; magnet; arget ⁷Li(p,), ⁷Li(d,); naping assembly. target is placed in the 5 possible positions

Nuclear reaction cross sections $\boldsymbol{\sigma}$ and particle yield Y:

- n ⁷Li(p,n)⁷Be
- γ ⁷Li(p,p'γ)⁷Li
- α ⁷Li(p, α) α

- M. Bikchurina et al. The measurement of the neutron yield ... Biology 10 (2021)
- S. Taskaev et al. Measurement of the $^{7}Li(p,p'\gamma)^{7}Li$... NIM B 502 (2021) 85-94
- D. Kasatov *et al. The measurement of the* $^{7}Li(p,\alpha)\alpha$... NIM B (2022)

Comparison of measured neutron yield with theoretical

II. Interaction of protons with lithium

Nuclear reaction cross sections $\boldsymbol{\sigma}$ and particle yield Y:

• n ⁷Li(p,n)⁷Be

M. Bikchurina et al. The measurement of the neutron yield ... Biology 10 (2021)

- γ ⁷Li(p,p'γ)⁷Li
- α ⁷Li(p, α) α

- S. Taskaev et al. Measurement of the $^{7}Li(p,p'\gamma)^{7}Li$... NIM B 502 (2021) 85-94
- D. Kasatov et al. The measurement of the ⁷Li(p,α) α ... NIM B (2022)

 σ , mb

Y, 10⁷ 1/μC

100 90 0 00 0 80 70 00 60 50 Brown 1951 △ Mozer 1954 40 Presser 1972 30 — Kononov 1997 × Aslam 2002 20 Mateus 2002 10 our results 800 1000 1200 1400 1800 2000 600 1600 2200 E, keV

⁷Li(p,p 'y)⁷Li reaction cross-section

4

478 keV photon yield from a thick lithium target

Nuclear reaction cross sections σ and particle yield Y:

 7 Li(p,n) 7 Be • n ⁷Li(p,p'γ)⁷Li

- M. Bikchurina et al. The measurement of the neutron yield ... Biology 10 (2021)
- S. Taskaev et al. Measurement of the $^{7}Li(p,p'\gamma)^{7}Li$... NIM B 502 (2021) 85-94

⁷Li(p, α) α • α

• γ

M. Bikchurina et al. The measurement of the ⁷Li(p,α) α ... NIM B (2022)

⁷Li(p, α)⁴He reaction cross-section

⁷Li(p, α)⁴He differential reaction cross section

Proton energy: 0.6 – 2 MeV (± 0.1 %) Current: 1.5 μ A (± 0.4 %) Beam diameter: 10 mm

- 1. Ion source
- 2. Cameras
- 3. Vacuum-insulated tandem accelerator
- 4. Aperture
- 5. Bending magnet
- 6. α-spectrometer
- 7. Lithium target

- Simulation of the back-reflected proton spectrum in the SIMNRA program. I = $0.42 \pm 0.02 \mu m$, $I_{imp} \sim 2.5 nm$
- Measuring the mass of lithium on a scale (1.5 mg ~ 0.5 μm). Overdisperses ~ 99.9% lithium

Cu, Li, C, and O – back-reflected protons from copper, lithium, carbon, and oxygen atoms.

⁷Li(p, α)⁴He, Q = 14.347 MeV. E_p = 1 MeV —> E_a = 7.663 MeV; E_p = 2 MeV —> E_a = 7.523 MeV.

Spectrum of charged particles registered by the α -spectrometer at proton energy of 1 MeV:

1 - 3 - back-reflected protons from copper atoms (1 - single events, 2 - double, 3 - triple),

4 – α -particles,

5 – simultaneous registration of an α -particle and a proton

III. Measurement of the ${}^{7}Li(p,\alpha){}^{4}He$ reaction cross section. Lithium thickness

Determination of α-particle energy

The distribution maximum is shifted by 50 – 70 keV relative to the calculated value. Ionization losses = 600 MeV/(g·cm²) The α -particle at 0.422 µm lithium loses ~ 134 keV, then the average energy loss ~ 67 keV (thickness ~ 0.211 µm)

Spectrum of charged particles registered by the α -spectrometer at proton energy of 1 MeV: 1 - 3 – back-reflected protons from copper atoms (1 – single events, 2 – double, 3 – triple), 4 – α -particles, 5 – simultaneous registration of an α -particle and a proton.

III. Measurement of the ${}^{7}Li(p,\alpha){}^{4}He$ reaction cross section. Lithium thickness

478 keV γ-quantum yield during the ⁷Li(p,p'γ)⁷Li reaction

At proton energies of 1.85 MeV, γ -quantum are generated down to a depth of 128 μm in lithium

- $h (\mu m) = 45.698 \left(\frac{Y_i}{Y_{185}}\right)^2 + 56.281 \frac{Y_i}{Y_{185}}$
- Ratio of signal intensities $\frac{Y_b}{Y} = 7.45 \cdot 10^{-3}$
- Accuracy of lithium layer thickness 3 %

I = $0.422 \pm 0.013 \, \mu m$

D. Kasatov, Ia. Kolesnikov, A. Koshkarev, A. Makarov, E. Sokolova, I. Shchudlo, S. Taskaev. Method for in situ measuring the thickness of a lithium layer. JINST 15 (2020) P 10006.

Angle 168°

⁷Li(p, α)⁴He reaction cross-section

⁷Li(p, α)⁴He differential reaction cross section

IV. Interaction of deuterons with lithium

- 1. ⁷Li + d = n + ⁸Be + 15,028 MeV
- 2. 7 Li + d = n + α + α + 15,121 M₃B
- 3. 7 Li + d = α + 5 He + 14,162 M₃B 5 He = n + α + 0,957 M₃B

4. ⁷Li + d = n + ⁸Be* + 15,027 МэВ ${}^{8}\text{Be}^{*} = \alpha + \alpha + 0.095 \text{ M}_{3}\text{B}$ 5. ⁶Li + d = α + α + 22,38 M₉B 6. ⁶Li + d = n + ⁷Be + 3,385 МэВ 7. 6 Li + d = p + 7 Li + 5,028 M₉B = p + ⁷Li* + 4,550 M₉B 8. ⁶Li + d = t + ⁵Li + 0,595 M₉B 9. ${}^{6}\text{Li} + \text{d} = {}^{3}\text{He} + {}^{5}\text{He} + 0,840 \text{ M}_{9}\text{B}$ ⁵He = n + α + 0,957 M₉B 10. ⁶Li + d = ³H + p + α + 2,6 M₃B 11. ${}^{12}C + d = p + {}^{13}C + 2,722 M \Rightarrow B$ 12. ¹⁶O + d = a + ¹⁴N + 3,110 МэВ 13. ¹⁶O + d = p + ¹⁷O + 1,917 МэВ = p + ¹⁷O* + 1,046 МэВ

Energy spectrum of charged particles recorded by α -spectrometer at 135° while irradiating a lithium target with **1 MeV** deuterons

V. Measurement of the ⁷Li(d,), ⁶Li(d,) reactions cross sections

 $E_{d} = 0.4 - 2.2 \text{ MeV}$

Energy spectrum of charged particles recorded by α -spectrometer at 135° while irradiating a lithium target with **0.4 MeV** deuterons

VI. Measurement of the ${}^{11}B(p,\alpha){}^{8}Be$, ${}^{11}B(p,\alpha_{1}){}^{8}Be^{*}$, ${}^{11}B(p,\alpha)\alpha\alpha$ reactions cross sections

 $E_p = 0.4 - 2.1 \text{ MeV}, Q = 8.59 \text{ MeV}$

Energy spectrum of charged particles recorded by α -spectrometer at 135° while irradiating a boron target with **2 MeV** protons

VI. Measurement of the ${}^{11}B(p,\alpha){}^{8}Be$, ${}^{11}B(p,\alpha_{1}){}^{8}Be^{*}$, ${}^{11}B(p,\alpha)\alpha\alpha$ reactions cross sections

$E_p = 0.4 - 2.1$ MeV, Q = 8.59 MeV

Energy spectrum of charged particles recorded by α -spectrometer at 135° while irradiating a boron target with **0.4 MeV** protons

- ⁷Li(p,n)⁷Be neutron yield
- ⁷Li(p,p'γ)⁷Li reaction cross section and 478 keV photon yield
- ⁷Li(p,α)⁴He reaction cross section
- ⁷Li(d,), ⁶Li(d,): 5 reactions
 cross sections
- ¹¹B(p,α)αα to be processed
- We are open for joint researches

