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1. As an example of the significant amplification of an external 

force, acting on a neutron in a crystal, we will discuss the 

spatial splitting of a neutron beam into two beams with 

opposite spin directions in a small magnetic field gradient 

during Laue diffraction in a crystal  

(that is analogous to the Stern-Gerlach effect). 

Outline  

2. In experiment the value of the spatial splitting of the beam 

reached 4.1 ± 0.1 cm at the flight distance of 21.8 cm (crystal 

thickness) for field gradient of 3 G/cm and Bragg angle of 82o 

3. In the empty space (crystal is removed), the splitting would 

be ~ 3.810−7 cm at the same distance and gradient. So the 

experimental value of the amplification factor is ~2105 tan2 B, 

(which is ~107 for B ~ 82o) what agrees well with the theory. 



15/06/23 
4 

We consider diffraction in a symmetrical Laue scheme (crystal boundary is 

perpendicular to the reflecting planes), in a “perfect”, "non-absorbing" 

crystal of large dimensions at diffraction angles close to the right one. 

“Perfect” 
mosaicity of the crystal <<  

the Darwin diffraction width 

“Large sizes” 
crystal thickness (~ 20 cm in  

our case) >> extinction length 

“Non-absorbing"  absorption length ~ crystal 

 size >> extinction length 

“Diffraction angles”  

B = 78 – 82o 

tan B = 4,7 – 7,1 

(tan 87o = 19) g is a reciprocal lattice vector, g = 2d , k = 2 

kg = k + g |k + g| = |k| is Bragg condition, it is equal to     = 2d sin B  

The nuclear potential of the system of reflecting planes responsible to 

diffraction has the form: 

It can transfer only the momenta equal to    ħg 
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For exact Bragg condition                 that is 

 |k0+g|=|k0| 

In more detail, we will describe the deviation 

from the Bragg condition by the parameter: 

two types of Bloсh waves are formed in a  

crystal – symmetric and antisymmetric: 

The wave vectors k(1) and k(2) belong to two branches of the dispersion surface: 

Here K is the wave vector of an incident neutron, taking into account refractive index:  
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So for  the case              neutrons propagate in crystal along crystallographic 

planes with wave vectors 

moreover, the neutrons in the state (1) are concentrated mainly on the nuclear 

planes (at the maxima of nuclear potential), and in the states (2) – between them (at 

the minima of nuclear potential                                             : 

Thus, neutrons in states (1) and (2) move at slightly different potentials and so have 

different kinetic energies (different values of wave vectors and velocities                     ), 

which reflects the equation of the dispersion surface for  

The neutron velocities themselves are equal 
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The difference of wave vectors in a crystal for the exact Bragg condition k0
2 = |k0+g|2  

is easily calculated from the equation of the dispersion surface: 

and 

that is, the expression for changing the k0 contains the angle between k0 and k0 
(which is normal to the boundary). In the symmetric Laue diffraction scheme,  

this angle coincides with the Bragg angle.  

    The phase difference of waves (1) and (2) during the passage of a crystal with a 

thickness L    determines so called  pendulum patten: 

is the extinction length. 

the time neutron  

spends in crystal 
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   The different symmetry of the waves in the crystal leads to another, so called, 

Borman effect. This is the effect of abnormal crystal transparency (or abnormal 

absorption) for waves passing through the crystal under the Bragg conditions. 

   The effect is due to the fact that the wave (1) concentrated on the planes (atoms) 

is absorbed stronger than the wave (2) concentrated between them. 

Neutron absorption in a crystal can be described by adding an imaginary part to the 

potential (– iV ),  V (r) <<< V(r) is real and positive. It also decomposes into 

harmonics. As a result, for exact Bragg condition, we will get 

and 

For neutrons in a monatomic crystal, due to the small size of the nucleus, all harmonics 

are practically the same, so  g can be close to 1. 

(for Si, for instance,  La ~ 40 cm) Is average 

damping index 



In the general case of Laue diffraction 

Wave functions can be written as 

Here 

and 

     At the exact Bragg condition (wg= 0), the waves (1) and (2) move parallel to 

the planes, and the packets always overlap for any thickness of the crystal.  

  If  wg 0, then the neutron currents (1) and (2) will diverge, so that at a certain 

thickness of the crystal and at a finite width of the packets they cease to overlap. 

Indeed, averaging over fast oscillations with period d the value 



If deviation from the Bragg angle is small (within the Bragg width, that is wg<<1), 

then j(1)
 and j(2) will have a simple form 

we get 

Kato trajectories are the lines tangent to which coincide 

with the directions of the current density at each point.  

In this case, these are straight lines. If neutrons fall on the 

crystal with a deviation from the Bragg angle they diverge in 

opposite directions 

If the incident wave is a wave packet limited, for example, by an entrance slit, then the 

Kato trajectory will describe the movement of this packet in crystal if its size is 

significantly larger than the extinction length. 

The angles  of the slope of the Kato trajectories are determined by 

note that 
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Note that in the symmetric Laue scheme waves (1) and (2) are excited in the crystal 

with amplitudes cos  and –sin . Therefore, for small deviations from the Bragg 

condition, i.e. for                  we have 

and both states are excited with almost the same probability (cos2 sin2 1/2).  

the slopes of the Kato trajectories are determined by 

we can note  

If an external force acts on the neutron, the parameter wg will constantly change – the 

trajectories will curve, and they will diverge in opposite directions. 

However, the directions of the currents (especially at Bragg angles B close to the 

right one, when k|| << g/2 and tanB = g/2k|| >>1) can change very significantly, 

indeed in this case: 

coordinate of the exit point of the  

Kato trajectory from the crystal 

the half-width of the base of  

the Borrmann triangle (fan)  

Thus, at diffraction angles close to 90o, even a small change in the parameter wg will 

lead to a significant change in the direction of the neutron current. 
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The change in the slope of the x(z) curve, describing the Kato trajectory, is determined 

by the expression 

where 

Consider the action of a constant external force F acting on a neutron in a perfect 

undeformed crystal. Only the force component Fx along the vector g (x axis) leads 

to a change in the deviation parameter wg. The force components parallel to the 

planes (along the y and z axes) do not change it. In this case the derivative of wg is 

easily calculated 

Describes 

classic neutron  

trajectory 

Finally  the equation for Kato trajectories will be   
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The classical Newton’s equation fоr the neutron  trajectory in the vacuum under the 

action of an external force directed perpendicular to its velocity is 

We see that the effect of the force, due to diffraction in crystal, is increased many times 

compared to the "empty" space, and the coefficient of such diffraction enhancement 

KD is equal to 

For example, for a system of planes (220) of a silicon crystal with an interplane 

distance d = 1.92 Å, which is often used in diffraction experiments with neutrons  

(En = 5,510–3 eV, Vg = 5,210–8 eV) the value of the diffraction gain is: 

Already at the Bragg angle B ~ 82о (c0 = 7,1) the value of KD is ~ 107. 

               is an additional essential enhancement of the effect, it is associated with an 

increase of time the neutron spends in the crystal, which is proportional to tan B. 

(For B ~ 88о, c0 ~ 30).   



Slits: 

S1 =17 mm,  

S2 = 15 mm,  

S3 = 18 mm 

Neutrons were deflected in a small gradient of the magnetic field under the action  

of forces    

Observation of diffraction enhancement of the  

Stern–Gerlach effect (PF1B, ILL) 

A double crystal scheme with direct beam collimation 

(top view). 

1 – neutron beam (PF1B, ILL); 

2 – concrete protection 

(casemate);  

3 – double crystal 

monochromator (pyrographite, 

dPG=3,35Å, =(3,5−3,9)Å));  

4 – translation stage for the 

crystals including a rotation 

stage;  

5 – two working silicon single 

crystal;  

6 – collimating (S1,S2) and 

scanning (S3) slits;  

7 – thermostat;  

8 – detector;  

9 – detector shielding;  

10 – beam dump 



Si working crystal  
130×130×218 mm3, 

 plane (220) d = 1.92 Å,  

Δd/d ~10–7  

The design of a magnetic system 

for creating a magnetic field gradient in 

a crystal.  

    As a result, opposite forces act in 

crystal on neutrons with opposite spins 

1 – silicon crystal, 2 – rotation stage (also 

part of field guide), 3 – neutron beam exit 

area, 4 – permanent magnets, 5 – magnetic 

field guide, 6 – piezomotor for exit slit S3 
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In an inhomogeneous magnetic field, inside the crystal,  forces of opposite direction will 

act on the neutrons with opposite spin projections (along and against the field) (as in 

the Stern–Gerlach experiment). Only the force components perpendicular to the planes 

along the vector g (x axis) lead to a change in the direction of the Kato trajectory: 

In our case (large crystal thickness and Bragg angles, i.e. Leff = L tan B >> La, 

only antisymmetric weakly absorbed waves (2) for both spins "survive" in crystals. 

They deviate in different directions (see Fig.) 
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      The slits S1 and S2 (at x = 0)  separate in the first crystal  the trajectories of 

neutrons, which bent in a certain way under the action of forces (set the initial slopes for 

2 spin projections). : 

    In the absence of forces, these would be trajectories with zero inclination (parallel to 

the planes, i.e. the z axis) of neutrons falling on the crystal exactly at the Bragg angle. 

   The presence of an external force will bend these trajectories, so only neutrons 

falling on the first crystal with fixed (opposite for opposite spins) parameters of 

deviation can pass through the second slit.  

   So these slits determine the initial angles of inclination of the trajectories 0. 

They can be found from the trajectory equations from the condition x(0) = x(L) = 0  
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As a result, in the first crystal these trajectories corresponding to neutrons with 

opposite polarizations will be described by curves 

In the second crystal, these trajectories will start at opposite angles of inclination, so 

that the force will continue to bend them in the same direction 

that is, in such a beam collimation scheme, the effect of two crystals (thickness L) 

doubles (the effect for one crystal in the case of doubling its thickness is quadrupled).  

Splitting at the exit of the 2nd crystal: 

shift at the exit face  

of the 2nd crystal: 

Note that the sensitivity of this experiment to external forces acting on a neutron in a 

crystal is determined by the magnitude of the force Fw required to shift the neutron 

beam at the exit from the second crystal by the width of the slit S3:  
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Here KD is the diffraction gain coefficient, the value (2En S3)/L
2 is the force 

perpendicular to the direction of motion of the neutron and necessary for its 

displacement by S3 in vacuum. We noted already that 

and can reach 107 for maximum Bragg angle of 82o  in experiment. 

Measurements were carried out, using neutron beam PF1B at ILL, for Bragg angles  B 

from 78o to 82o. The minimum sizes of collimating slits (S1= 17 mm, S2 = 15 mm, 

S3 = 18 mm) were selected to obtain sufficient statistical accuracy during a limited 

time of the experiment 



20 

Measurement results 

Intensity distribution N over the exit surface of the working crystal (lS3 is the position 

of the scanning slit S3) at different diffraction angles B = (78 − 82)o in the 

presence of a magnetic field gradient 
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exp = (4,1 ± 0,1) см 

From this data we can extract the value of the field gradient (the open circles in Fig.)  

The distance between the maxima for the two 

spin projections and the gradient of the field 

depending on the Bragg angle.  Dotted line is the 

average value of the magnetic field gradient 

The average value of the 

magnetic field gradient over the 

neutron beam in the experiment 

turned out to be 

which is consistent with estimates 

based on magnetometer readings 

at three points on each side 

(entrance and exit) of the crystal, 

which gave 

3.0 ± 0.3 Gs/cm 

At a maximum angle of 82o, the splitting value of exp is 
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The calculation of the spatial splitting of a neutron beam with a 

wavelength λ = 3.8 Å, En  5.5 meV (which corresponds to B = 82°),  
in free space when passing in the same magnetic field gradient through the 

same 3-slit collimator (21.8 cm), but without a crystal (removed from the 

installation) gives 3.9·10–7 cm.  

 

To split into 4.1 cm, the beam must travel ~ 900 m! 
 

Thus, the experimentally measured coefficient of diffraction 

enhancement 

at B = 82°, which is in good agreement with the theory. 
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Conclusion 

For the first time, a 7 orders enhancement of the Stern–

Gerlach effect was observed for a neutron in a crystal and 

 the total coefficient of diffraction enhancement  for the 

external force acting on the neutron at Bragg angles close 

to /2 /2 was measured.  

Its value is consistent with the theoretical one... 

     An experimental study of small effects on a diffracting 

neutron depending on the Bragg angle at B ~ 90o has been 

carried out.  

     The spatial splitting of a neutron beam into two with 

opposite spin directions in a weak magnetic field gradient 

during Laue diffraction in a crystal (analogous to the Stern-

Gerlach experiment) was measured 
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Based on the count rates in this experiment, it is possible to estimate its 

sensitivity (the error in measuring the external force) achieved per day: 

The use of cold neutron sources, such as the planned for PIK reactor with a 
spectral neutron flux density of ~ 5108 n/Åcm2c, makes it possible to use 
slits ~ 0.1 mm in size and Bragg angles up to 88o , while the neutron count 
rate from one exit slit can reach 50 n/s, which results in an improvement in 
sensitivity by about 12 000 times. 

The multi-slit version (for example, 100 slots) gives an increase in sensitivity 

by an order of magnitude. Thus, in principle, sensitivity at the level 

The attraction force of a neutron by the Sun in the Earth's orbit is 

So a possible application of such a setup may be related to measuring the 

ratio of the inertial and gravitational masses of the neutron. 



15/06/23 25 

Thank you for attention! 
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12:0012:00  

Сила будет менять знак  

каждые 12 часов 

Будем видеть суточные 

Колебания интенсивности 

Чувствительность установки  

может достичь величины:  

FF ~~  5 105 10--1818  eVeV/cm per day/cm per day  

Кристалл-дифракционный метод проверки 

эквивалентности инертной и гравитационной масс 

нейтрона 

Современная точность (m(mii/m/mGG)~1.7 10)~1.7 10--44  

J. Schmiedmayer J. Schmiedmayer (1989)(1989)  

Fm gc 

Fm gc 


