New time pick-off algorithm for time-of-flight measurements with PIN diodes
 Kamanin D.V. ${ }^{1}$, Pyatkov Yu.V. ${ }^{1,2}$, Zhuchko V.E. ${ }^{1}$, Goryainova Z. I. ${ }^{1, *}$, Falomkina O.V. ${ }^{3}$, Pyt'ev Yu.P. ${ }^{3}$, Strekalovsky A.O. ${ }^{1}$, Alexandrov A.A. ${ }^{1}$, Alexandrova I.A. ${ }^{1}$, Korsten R. ${ }^{3}$, Kuznetsova E.A. ${ }^{1}$, Strekalovsky O.V. ${ }^{1,5}$

\qquad

*zoyag2012@gmail.com

Introduction:

Paraspline description:

To find the best approximation of the signal $f(\mathrm{xi})=\mathrm{yi}, \mathrm{i}=1, \ldots, \mathrm{~N}$, by a smoothing spline with the additional condition described above, we will proceed as follows. Lets select the data area ($x 1, \ldots, x n, y 1, \ldots, y n$), $\leq \mathrm{N}, \mathrm{N}$, for which we will search for a smoothing spline. This area consists of points lying to the right of point ($\times 0, y 0$) (Fig 1), which is the border to the right of "reiable points" of the signal: to the left of this point all points of the signal belongs to the interval [yb-3o, yb+3o], where $y b-$ is
the mean value of the noise, $\sigma-$ is the noise dispersion, so it is impossible to reliably distinguish noise from signal. The size n of the area ($\mathrm{x} 1, \ldots, \mathrm{xn}, \mathrm{y} 1, \ldots, y n$) is chosen large enough, $n \geq 200$.
The main idea of the Paraspline algorithm

1. Fix the value of the smoothing factor p . With this fixed value of the smoothing parameter, we find the smoothing $\operatorname{spline} \operatorname{Sp}(\cdot)$ of order $\mathrm{q}=2$, which minimize the functional (1) and is the best approximation for signal ($\mathrm{x} 1, \ldots, \mathrm{xn}, \mathrm{y} 1, \ldots, \mathrm{yn}$) (that is, a cubic spline on intervals (xi,xi+1), $\mathrm{i}=1, \ldots, \mathrm{n}-1, \mathrm{n} \geq 2$).
2. The parabola with a vertex on the mean of the signal's baseline (shown as C at Fig.1) is defined by the following equation:
$y=a \times 2+b x+b 2 / 4 a+C$.
3. It is necessary to sew the smoothing spline $\mathrm{Sp}(\cdot)$ smoothly (equality of values and derivatives) on its left border xs (at the sewing point) with the parabola defined by
the formula (2) the formula (2).
After the smoothing spline $\mathrm{Sp}(\cdot)$ is found, we have two equations for finding the parameters of the parabola a and b
Axs $2+b x s+b 2 / 4 \mathrm{a}$
$2 \mathrm{axs}+\mathrm{b}=\mathrm{Sp} \mathrm{p}^{\prime}(\mathrm{xs})=\mathrm{h}$. $\quad \mathrm{Sp}(\mathrm{xs})=\mathrm{g}, \quad$ (3)
$\begin{array}{ll}\text { Hence we find that } & \text { As the anchor point, we take the point with the abscissa } x p=-b / 2 a \text {. (i.e. abscissa of the parabola vertex). } \\ \text { Thus, for each value of the smoothing factor } p \text { (for example, using the grid }[p 1 \text {. }\end{array}$ $\mathrm{b}=\mathrm{h}-2 \times \operatorname{sh} 2[4(\mathrm{~g}-\mathrm{C})]$.

Fig. 1 Digital signal with Paraspline pick-off. Red line $y_{b}-$ mean local baseline; in between dotted red lines $\left[y_{y}-3 \sigma y_{b}+3 \sigma\right]$
noisy region; orange line - fitted spline; black dot $\left(x_{0}, y_{0}\right)$ point of functions' tangency; green curve - parabola with vertex on the signal's start

Experiment Ex1 to verify Paraspline:

Figure 2. Layout of LIS spectrometer in Ex1.
${ }^{2}$ Cf Ex1 setup (Fig. 2):
Time-of-flight spectrometer LIS
${ }^{252} \mathrm{Cf}$ source
Two microchannel plate (MCP) timing detectors for time registration CFD time pick-off)
PIN diode for both energy and time registration (Paraspline time pick-off)

Paraspline verification:

- event by event comparison of "true" velocity V_{1} (calculated using MCP-MCP-PIN flight path using MCP-PIN

Paraspline resolution:

Resolution tested on signals produced by adding various realizations of noise to an expected value of a signal (Table 1)

Figure 5. a) Setup of Ex2 at IC-100 accelerator. The flight passes do exceed correspondingly $\mathrm{L} 1=500 \mathrm{~mm}, \mathrm{L2}=142 \mathrm{~mm}, \mathrm{~L} 3=141 \mathrm{~mm}$. b) Photo the target not at $\mathrm{IC}-100$ accelerator.

Figure 7. Energy/Mass distribution for all ions in Ex2 (Standard Error of Mean is so small that error bars are omitted in the plot).

Ex2 setup (Fig. 5):
$-{ }^{132} \mathrm{Xe}$ beam of $\sim 160 \mathrm{MeV}$ from IC-100 accelerator (FLNR, JINR) - Target: AI (~ 5 um thick), $\mathrm{Ti}(2$ $\mathrm{um}), \mathrm{Cu}(\sim 3.6 \mathrm{um}), \mathrm{Ag}(\sim 0.1 \mathrm{um})$,
$\mathrm{Au}(\sim 0.1 \mathrm{um}), \mathrm{Zr}(\sim 2 \mathrm{um})$ and Ni Au ($\sim 0.1 \mathrm{um}$)
($\sim 1 \mathrm{um}$) foils
Time-of-flight spectrometer set at a 30° angle to the beam Two MCP timing detectors - Two MCP timing detectors
(START TD and STOP TD for time registration (CFD time pickoff)

- PIN diode for time and energy registration (Paraspline time pickoff)
- Degrader foils of various thickness installed before the START TD detector to ensure a wide ranae of ions' eneraies

dM(u)
Figure 8. Distribution of derivation of reconstructed masses from the literature data for all ions.

We define the smoothing spline $s(\cdot)[4]$ of order q as a solution of the following We define the smoo
minimum problem:

$$
\begin{equation*}
\min _{\{ }\left\{p \int_{a}^{b}\left(s^{(q)}(x)\right)^{2} d x+\sum_{j=1}^{n}\left(s\left(x_{j}\right)-y_{j}\right)^{2}\right\} \tag{1}
\end{equation*}
$$

Parameter vector of $s(\cdot)$ is varied to rich a minimum of the functional (1). The smoothness of $s(\cdot)$ increases with increasing order of the spline q and increasing smoothing factor p. Factor p must be known before the minimization of (1).
The value of the smoothing parameter is determined based on article [4] (see p. 582). as follows.
he smoothing spline $\mathrm{Sp}(\cdot)$ can be presented in the form of two terms: the first term is he "smooth" term $\sigma p(x i), i=1, \ldots, n$, estimating the dependence of the signal of interest nise dependence on time is differences $\mu \mathrm{p}(\mathrm{xi})=\mathrm{yi}-\sigma p(\mathrm{xi}), \mathrm{i}=1, \ldots, \mathrm{n}$, representing the oise dependence on time.
it the smoothing spline (i.e., the smoothing factor p) is selected correctly, then the nooth term should not contain "visible" traces of noise, and the difference should not have "regular" components from the signal. If to the difference $\mu \mathrm{p}(\mathrm{xi})=\mathrm{yi}-\sigma p(\mathrm{xi})$, , actor, we get the spline $v p(x)$, identically equal to zero. Therefore, to find the" correct " value of the smoothing factor, for each value of the smoothing factor p in some grid $[\mathrm{p} 1, \ldots, \mathrm{pn}]$ we calculate the spline $\mathrm{vp}(\mathrm{x})$ and its norm
$\|v \mathrm{p}(\mathrm{x})\|^{2}$. The value of the smoothing factor, at which the norm is minimal, will be considered optimal. Thus, we also found the binding point xp of the parabola orresponding to this value of the smoothing factor

Paraspline verification:

- event by event comparison of ions' velocity calculated with PIN diode at Stop TD - PIN flight path with velocity at Start TD -STOP TD path (Fig. 6);
- Reconstruction of ions' masses using their velocities and energies registered by PIN diode (Fig. 7, 8)

Conclusion:

Correctness of Paraspline time pick-off algorithm was tested in two time-of-flight experiments. The results show a good agreement between the experimental velocities as well as unbiased mass reconstructed in a wide range of particle energies. Algorithm provides acceptable resolution inversely proportional to signal's amplitude.

