

Applying TalysLib library for optimization of optical potential parameters for neutron scattering on ²⁴Mg and ³²S

Pampushik G.V.,¹ Fedorov N.A.²

¹ Faculty of Physics, Lomonosov Moscow State University (MSU), Moscow, Russia

² Joint Institute for Nuclear Research (JINR), Dubna, Russia

Optical model fit for ²⁴Mg

TANGRA project

Project "TANGRA" (<u>TAgged Neutrons & Gamma-RAys</u>) [1] at JINR-FLNP (Dubna) is aimed at studying nuclear reactions caused by fast neutrons.

As a source of neutrons a VNIIA portable neutron generator ING-27 (Fig.1) is used [2]. The 14.1 MeV neutrons are produced in d-t fusion reaction:

 $d + t \longrightarrow \alpha + n, Q = 17.59 \text{ MeV}$

The built-in ING-27 neutron tube 64-pixel α -detector allows to "tag" and count neutrons, because the both reaction products are emitted nearly collinear in opposite $\begin{bmatrix} \hat{\Psi} \\ \Psi \end{bmatrix}^{1}$ directions.

Fig.1. General scheme for TANGRA experimental setup.

For our calculations we use symmetric rotator model and deformation parameters from TALYS default files. All experimental data was obtained from EXFOR with usage of TalysLib library in neutron energy diapason from 14.6 to 14.8 MeV.

Fig.4. Result of the optical model fit of our experimental dataset: ²⁴Mg(n,n) (left) and ²⁴Mg(n,n') ($\chi^2/N = 3.91$)

V_V MeV	W _V MeV	W _D MeV	V _{SO} MeV	W _{SO} MeV	<i>r_V</i> fm	a_V fm	r _D fm	a_D fm	r _{so} fm	a _{so} fm	β_2	γ	eta_4
48.70	1.286	7.63	5.413	-0.07	1.163	0.674	1.296	0.54	0.96	0.59	0.592	20	-0.05

TalysLib (https://github.com/terawatt93/TalysLib)

For the purposes of theoretical part of the project, the TALYS [3] program is used. It is a powerful nuclear reaction calculation program which uses RIPL-3 database. To simplify access to the calculation results and the TALYS database, as well as ENDF and EXFOR [4] databases, TalysLib is being developed.

TalysLib is an object-oriented C++ library. Its structure (Fig.2) groups nuclear data to C++ classes which are correspond to real physical objects and each object has a pointer to parent one.

Model parameters adjustment

TalysLib can be used model parameters search to improve agreement of the reactions parameters, calculated in TALYS, with experimental data using the χ^2 method. This functionality is implemented in the TalysFitterMT class and uses MINUIT minimizer built into ROOT. The minimization procedure is presented in the Fig.3.

Optical model parameters of TALYS 1.9 by default.

V _V MeV	W _V MeV	W _D MeV	V _{SO} MeV	W _{SO} MeV	r _V fm	a_V fm	r _D fm	a _D fm	r _{so} fm	a _{so} fm	β_2	γ	β_4
48.36	0.971	4.79	4.735	0	1.167	0.633	1.349	0.70	0.85	0.58	0.579	20	-0.107

Optical model parameters gained from fit of experimental data.

Optical model fit for ³²**S**

For our calculations we use vibration model and deformation parameters from TALYS default files. All experimental data was obtained from EXFOR with usage of TalysLib library in neutron energy diapason from 13.9 to 14.3 MeV.

Fig.5. Result of the optical model fit of our experimental data: ${}^{32}S(n,n)$ (left) and ${}^{32}S(n,n')$ ($\chi^2/N = 19.97$)

V _V MeV	W _V MeV	W _D MeV	V _{SO} MeV	<i>W_{SO}</i> MeV	r _V fm	a_V fm	r _D fm	a _D fm	r _{so} fm	a _{so} fm	β_2
48.89	1.20	7.68	5.46	-0.07	1.18	0.67	1.29	0.54	0.98	0.59	0.299

Optical model parameters of TALYS 1.9 by default.

V _V MeV	W _V MeV	W _D MeV	V _{SO} MeV	<i>W_{SO}</i> MeV	r _V fm	a _V fm	r _D fm	a _D fm	r _{so} fm	a _{so} fm	β ₂
50.60	0.93	4.78	7.62	0	1.17	0.58	1.14	0.76	0.83	1.0	0.316

Optical model parameters gained from fit of experimental data.

Conclusions

Fig.3. Block diagram of the minimization procedure.

The experimental data should be represented as D(x) function, where x is a parameter unique for each data point (like number, angle, etc). Function C connects the model parameters and minimization parameters. F returns calculation results for each data point with parameter x and used for the gradient calculations in multithreaded mode.

Experimental data extraction

The EXFOR is the most complete neutron reaction database nowadays, but its files are quite complex to read. We compared existed tabular formats that are already been created based on EXFOR: C4 [5] and EXFORTABLES [6]. In our analysis, we noticed errors in identification of the type of reaction. We were able to fix this for C4 format and create our own experimental database based on this format.

A new functional for experimental data extraction from EXFOR was added to TalysLib. Based on the obtained experimental data we optimize optical model and deformation parameters for ²⁴Mg and ³²S. We used TALYS global parametrization as initial values and assumed that first exited states can be described in terms of asymmetric rotator for ²⁴Mg and oscillator for ³²S. The most significant changes where noticed for depths of the imaginary part of the optical potential and surface and spin-orbital components of diffusion. Deformation parameters have not changed that much. The optical model parameters optimization improved agreement between calculation and experiment significantly.

References

[1] I.N. Ruskov, Y.N. Kopatch, V.M. Bystritsky et al. // Physics Procedia 2015. 64. P. 163. [2] VNIIA Neutron generator ING-27, http://www.vniia.ru/production/incl/prospekt_element.pdf [3] A. Koning, D. Rochman // Nuclear Data Sheets 2012. 113. P. 2841–2934. [4] N. Otuka, E. Dupont, V. Semkova et al. // Nuclear Data Sheets. 2014. 120. P. 272–276. [5] E. Cullen, A. Trkov // report IAEA-NDS-80. Rev. 1. 2001. [6] A. Koning // IAEA NDS Document Series IAEA(NDS)-235. 2020.

* pampushik.g@gmail.com