29th International Seminar on Interaction of Neutrons with Nuclei: «Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics»

MEASUREMENT AND ANALYSIS OF THE TOTAL THICK TARGET YIELD FROM THE $^{13}C(\alpha, n_0)^{16}O$ REACTION

P.S. Prusachenko, T.L. Bobrovskiy, M.V. Bokhovko, A.F. Gurbich

Institute for Physics and Power Engineering, Experimental Nuclear Physics Department, Bondarenko sq. 1, Obninsk 249033, Russia

Motivation

Needs:

- The data on the total thick target yield (TTY) from ${}^{13}C(\alpha,n){}^{16}O$ reaction are required to verify the evaluated cross-section of the ${}^{13}C(\alpha,n_0){}^{16}O$ and ${}^{16}O(n,\alpha_0){}^{13}C$ reactions
- The data on the TTY from the ¹³C(α,n)¹⁶O reaction are used to normalize the experimental data on the cross-section of the ¹³C(α,n₀)¹⁶O reaction

Current problems:

- The existing experimental data were measured with a large uncertainty
- ~10% uncertainty of the 13 C contain in the natural carbon, 10-20% the uncertainty of the 4π detectors efficiency
- The measured TTY data do not support the new ENDF-B/VIII,0 and JENDL-5.0 evaluations.

The aim of work:

- To obtain the new experimental data on the TTY from $^{13}C(\alpha,n0)^{16}O$ reaction
- To decrease the uncertainty influence

Experimental method

- Time-of-flight method
- Acquisition system based on waveform digitizer
- Energy range 3.0 6.5 MeV
- Angle range 0 150°
- Detectors p-terphenyl and stilbene
- Pulsed beam of He++
- Thick carbon target, 90% ¹³C enrichment
- Surface barrier detector as beam monitor

Data analysis (I)

Pulse shape discrimination

Examples of neutron spectra measured at $\theta = 0^{\circ}$

Digital signal processing:

- Pulse shape discrimination a cross-correlation based algorithm
- Timestamps a constant fraction algorithm
- Pulse integral numerical integration over 200 ns from the pulse start

<u>1d neutron energy spectra were constructed after sorting the events on the PSD</u>

Data analysis (II)

- $N(E_n, E_n + \Delta E_n, \theta)$ number of events corresponding to the neutron energy of E_n and the angle of θ
- $\varepsilon(E_n)$ intrinsic efficiency of neutron detector
- η number of α -particle hitting the target
- $\gamma(E_n, \vartheta)$ multiple neutron scattering correction factor
- ρ content of ¹³C in the target
- ξ stopping power difference correction
- Ω solid angle of the detector
- ΔE_n bin width in the spectrum

Target composition

Corrections

- The efficiency of detectors were calculated using GEANT4 framework taking into account the NRESP7 model.
- The simulation results were verified by the three independent experiments
- The influence of the multiple scattering was negligible
- The efficiency of the second detector was verified relative to the first one.
- The efficiency uncertainties 1.5% for the first detector, 4.0% for the second one

- Multiple scattering correction was made based on the GEANT4 simulation
- The full geometry of the experiment was taken into account
- The attenuation of the neutron flux in the target made the main contribution to the correction
- The correction obtained for the θ =75° had too large uncertainty, spectra at this angle did not taken into account in further analysis

Results. Neutron spectra

- The measured spectra were compared with the calculated ones and the data from paper of Jacobs and Liskien¹
- Calculated spectra were obtained for $\theta = 0^0$ using the cross-section presented in Barnes², Kerr³, Prusachenko⁴ papers
- There are significant discrepancies between data measured in this work and data presented by Jacobs
- G.J.H. Jacobs and H. Liskien, Annals of Nuclear Energy 10 (1983) 541.
- 2. B. K. Barnes et al, Physical Review, 140 (1965) B616
- 3. G. W. Kerr, Nuclear Physics A, 110 (1968) 637
- P. S. Prusachenko et al, Physical Review C, 105 (2022) 024612.

Stopping powers

The spectra of α -particles backscattered from the ¹³C target and SIMNRA7 fit with two different stopping powers models

- The stopping powers of α-particles in carbon obtained by Bobrovskiy et al.¹ were used to calculate the TTY values based on the theoretical evaluations
- The stopping powers obtained by Bobrovskiy et al.¹ much better reproduce the α-particle backscattered spectra acquired by the SBD monitor than other SP datasets such as SRIM-2013
- The influence of the allotropic effect was negligible²
- 1. T. L. Bobrovskiy et al., "Determination of stopping power for light ions using resonance backscattering," *Nuclear Instruments and Methods in Physical Research B* (submitted for publication).
- 2. Mitsuo Tosaki, Eero Rauhala, "Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra," *Nuclear Instruments and Methods in Physical Research B*, **360**, 16 (2015)

Total thick target yields

Measured TTY vs. ENDF-B/VIII.0 based calculation

- Measured TTY values were compared with calculations based on the ENDF-B/VIII.0 and JENDL-5.0 evaluations
- The average difference between the experimental results and ENDF/B-VIII.0 based calculation is ~3.8%
- The experimental data and the JENDL-5.0 based calculation differ significantly (17-19%)
- Total measurement uncertainty is ~3.5%, including efficiency (~2.0%), current integration (~2.0%), and angle distribution integration (~1.5%) uncertainties
- Calculation uncertainty is ~3.0%

Conclusions

- The double differential yields of neutrons from the $^{13}C(\alpha,n_0)^{16}O$ were measured over the energy interval of 3.0 6.5 MeV
- The total systematic uncertainty was 3.5%
- The total thick target yields were determined by integrating the double differential thick target yields both over the neutron energy and the solid angle
- The precision analysis of the elemental and isotope composition of the target was made using the α -particles backscattering spectrometry and the nuclear reaction analysis. The accuracy of the ¹³C content determination is 0.7%
- The measured total thick target yields from ${}^{13}C(\alpha,n_0){}^{16}O$ reaction are support the ENDF-B/VIII.0 evaluation within the uncertainties of the experiment (3.5%) and the yield calculation (3.0%)

Thank for your attention!