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TANGRA Setups consist of a portable generator of “tagged” neutrons with an energy of 14.1 MeV, ING-27, with or withoutan iron shield-collimator, 2D fast neutron beam
profilometer, arrays of neutron-gamma detectors in geometry of daisy-flower (Romashka, Romasha, HPGe), a computerized system for data acquisition and analysis (DAQ).

*“l’j Q('/l A \ f

N'umber of Nal(Tl) detectors: 22 . t 4 - I\vu.mber of BGO detecto{s. 18 ) :_’ ‘Number of HPGe detectors: 1

Size of Na(Tl) crystals: hexagonal prism 78 x 90 x 200 mm \ i Size ofB(?vO crystals: c}'hm?ea}@ 76 x 65 mm Type: Ortec® GMX 30-83-PL-S, $57.5 x 66.6 mm

PMT type: HamzmasuRl%OG d 1] PMT type: HamamatsuRl.?O o . G -ray Energy-resolution ~3.4 % @ 0.662 MeV
Gamma-ray Energy-resohuion ~ 7.2 % @ 0.662 Mev Gamma-fay Energy-tesohution ~104% @ 0662 MeV @ Gm—tayEnergy-res SR
Gamma-ray E_nergy—mo!lmon ~ 3.6 % @ 4.437 MeV Gamma-ray Energy-resolution ~ 4.0% @4.437 ME\. G -ray Time-resolution  ~ 6.1 15 @ 44437TMeV
Gamma-ray Time-resolution ~3.8 ns @ 4.437 MeV/ Gamma-ray Time-resolution ~41ns @4.437 MeV
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Based on a
sealed DT-tube

TiT-to-front distance : 44.0 + 1.4 mm Double-side Si a-particles detector
TiT-to-a—detector distance: 100 + 2 mm Number of pixels: 64 (8x8 strips)
Power supply voltage: 200 + 5V Pixel area: 6x6 mm?

Max Power Supply Current: 300 + 30 mV Distance between strips: 0.5 mm
Consumed Power: < 40 W \oltage bias: —250V DC
Continuous Mode: 14-MeV neutrons Dark current: < 8uA

Initial Intensity: > 5.0 x 107 n/s/4n n-tube life-time: > 800 h

Final Intensity: > 2.5 x 107 n/s/4n < ING Duty time >: 18 months

Weight: ING-27:7.5+ 0.5 kg ; Power Supply and Operation Unit: 2.7 + 0.3 kg


http://www.vniia.ru/eng/production/neitronnie-generatory/neytronnye-generatory.php

TANGRA ¢ Time-Correlated Associated Particle Method (TCAPM)

The 14-MeV neutron is tagged in time and direction by detecting the associated a-particle,

emitted in opposite direction in CMS.

Segmented ING-27 - 14.;) ;Zs?tsr:?:/ns J—— _ ________
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TANGRA: Time-Correlated Associated Particle Methed, TCAPM

The 14-MeV neutron is tagged in time and direction by detecting the associated a-particle,

emitted in opposite direction

ING-27
Segmented - DT-neutrons
Alpha-detector Tritium 14.1 MeV: 5
e Target .1 Me cm/ns
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3.5MeV: 1.3 cm/ns
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Registration of coincidence between alpha-particle and gamma-detectors l l l

> Time of alpha-gamma coincidence t, Stop Analysis:
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TANGRA-Setup: ING-27 + “Romashka” Nal(Tl)
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TAN GRA-Setup ING-27 + “Romasha” BGO \@P

Number of BGO detectors: 18 N
BGO crystals cyllnder 76 x 65 mm) = =

T : 307 s &
~10. 4%%_3 0.662 MeV
n ~4.0% @4.437 MeV
@ns @ 4.437 MgV
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TANGRA-Setup: ING-27 + HPGe

HPGe detector:

Type: Ortec®GMX 30-83-PL-S, ¢ 57.5 x 66.6 mm
Gamma-ray Energyares h~3.4% @ 0.662 MeV
CEINNERLEL En@rgy-resolqtidh ~ 0.3% @ 4.437 MeV
CEININERTE Tl‘Fhe-resqu%ia‘n £6.1 ns @ 4.4437MeV

Shielding(Pb)  ING-27

172

Fig. 2. Scheme of the TANGRA setup with the HPGe
detector in the reaction plane: 1 — neutron generator ING-27,
2 — lead shielding, 3 — case of the HPGe detector,

4 — HPGe crystal, 5 — sample. Axis of the experimental
setup is indicated by horizontal dashed line. Tritium-enriched
target is marked as asterisk. All dimensions are in mm.
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Elements important for Nuclear Science ‘s
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A promising neutron source based on the EG-5
accelerator at FLNP JINR

Doroshkevich Aleksandr at el.

E-mail: doroh@jinr.ru
eam parameters of EG-5 accelerator

Neutron beam
parameters

GasTarget
D(d,n)*He

-Neutrons flow — 5 107 pat's sm?
Max. neutrons energy - 5,5+0,1 MeV
(Decutron current 2mkA, dcutron
energy — 2,5MeV);

Investigation of Rhenium by Neutrons

The EG-5 accelerator comblex

Reaction

Accuracy Con

Quantity Sec.E/Angle

Y

¥
=
5

7.5
s

S
Building 42 .
1 - Installation for the study of helium porosity; -
2 - lon irradiation chamber; S
3 — lon Beam Spectrometer Chamber; : i 5
4 — Installation of NAA (lithium target); ° 1 kev-108 ke¥
5 — Installation for the study of reactions with the departure of : ke
charged particles; ® Trermel-100 e¢
6 — Installation for channeling research; * Toaremi-2a. )
° -8 508 eV-380 xeV
7 — Besides IBT : Chemical Laboratory; ®  sseve 516 Thernal-5 ev 1Y Fis

8 — Engineering Laboratory;

Nuclear Data High Priority Request List

Date
12-5¢F-08
12-MAY-86
12:00v-08
16-29R-07
10-58P-93
11-58p-08
11-56p-08
11-s8p-08
11-56P-08

Most of the required neutron energies are in the range, which can be achieved in our

accelerator. These tasks are difficult and expensive to solve at other types of neutron
[2] https://www.oecd-nea.org/dbdataihpri/search,pi?vhp=on facilities.
lon beam parameters
Range of ion beam currents - 0,01 - 3 MkA (100 — 250mkA*); .
Real ion b 800 keV — 2.5MeV (4.1 MeV* Experimental Hall EG-5, FLNP, JINR
- & -, T bt oe - _ \ 2
eal ion beam energy rdnae eV —2,5MeV (4,1 MeV*); Group of Yu.M. Gledenov
Tne: oS : n_ rorac oV +
- Energy ruolllmon (IT, ") r:ot worsc than 15keV; ) Unigue results have
- Charged particles flow (H*, He?") — 10'2-10"* part /s sm™ been obtained
The recent results have
been obtained at EG-5,
FLNP, JINR, the technique
. has been developed at
Nuclear physics FLNP and tested at EG-5:
Nuclear re with fast neutrons, i Cross Se,":"'"st of ‘(“'“)
- research of fast neutron induced fission: measurements of the prompt fission Leactlgn with fas ;eu rons
neutron (PFN) spectra and total kinetic energies (TKE) in reactions #*5U(nf), ayebeen measure
238Y(n,f), P7Np(n.f), Z*Pu(n,f) for neutron energy region of 1-5 MeV;
- the study of the multiplicity of PFNs in these fast neutron reactions in geometry
with high efficiency of PFN registration;
- measurement of the spectra of charged particles from reactions (n, a), (n, p)
depending on the neutron energy in the energies region up to 5 MeV and higher;
- measuring the integral and differential cross sections of these reactions as a
function of neutron energy;
- investigation of the spectrum and angular distributions of charged particles at a
neutron energy of ~ 20 MeV in order to study non-statistical effects;
- the study of reactions (a, n) and (p, n) in combination, respectively, with reactions (n,
a)and (n,p); 3
- investigation of elastic and inelastic scattering of fast neutrons by atomic nuclei; Archarged particies = specirometer. Neutron'generator
- Using the TOF technique in a pulsed mode (f~ 1 MHz, dt~1-10 ns).
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Rhenium - A METAL WITHOUT WHICH JHERE WOULDN'T BE GASOLINE!

Abstract. Modern and advanced technologies require the synthesis and use of new materials with
improved and well-known properties and characteristics. In recent years, due to the unique
properties of rhenium (Re) as one of the other refractory elements (Ta, Mo, W, Ti, Zr, Tc), its use
worldwide has increased significantly. Rhenium 1s used, for example, in the aerospace industry
(high-temperature W- and Mo-alloys for jet and rocket engines), the chemical industry, coating
and welding, electronics, photography, nuclear medicine, etc. Rhenium is among the rarest metals
on Earth and 1t does not occur uncombined or as a compound in a mineable mineral species.
However, it 1s spread throughout the Earth’s crust to the extent of ~0.001ppm. Production of
rhenium 1s by extraction from the flue dusts of molybdenum smelters or by phytoextraction from
soils and waters. The EXFOR experimental nuclear data library for the cross sections of (n, y), (n,
n'), (n, 2n), (n, 3n), (n, p), (n, o) reactions (activation, differential, total), the energy and angular
distributions of the reaction products contain not many data. Some of the included datasets
significantly differ from each other, others have relatively large experimental error-bars. It is
proposed to start a comprehensive study of the nuclear properties of rhenium isotopes using
neutrons of various energies at the Frank Laboratory of Neutron Physics (FLNP) of the Joint
Institute for Nuclear Research (JINR) in Dubna (Russia). The experimental results obtained can
be used to better understand the mechanism of neutron-induced nuclear reactions, as well as for
the needs of nuclear, life and environmental sciences.
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Rhenium
Transition metal

Symbol Neutrons

Re 111

Atomic number Energy levels

75 6

Atomic weight (amu)

186.2

Shell structur:

Atomic radius (pm)

188

Proton/electrons

75

Atomic orbitals
Orbital types

melting point
boiling point

specific gravity

Investigation of Rhenium by Neutrons

[Xe] 4f* 5d°6s2

Rhenium valence orbitals

3,180 °C (5,756 °F)

5627 °C (10,161 °F)

20.5 at 20 °C (68 °F)

Rhenium (Re), chemical element, a very
rare metal of Group 7 (VIIb) of the periodic
table and one of the densest elements. Predicted by
the  Russian chemist Dmitry  Ivanovich
Mendeleyev  (1869) as chemically related
to manganese, rhenium was discovered (1925) by
the German chemists Ida and Walter Noddack and
Otto Carl Berg. The metal and its alloys have found
limited application as turbine blades in fighter-
jet  engines, fountain pen points, high-
temperature thermocouples (with platinum), cataly
sts, electrical contact points, and instrument-
bearing points and in electrical components, such
as in flashbulb filaments as an alloy with tungsten.

Rhenium does not occur free in nature or as
a compound in any distinct mineral; instead it is
widely distributed in small amounts in other
minerals, usually in concentrations averaging about
0.001 parts per million. Chile is the world leader in
rhenium recovery, followed by the United States,
Poland, Uzbekistan, and Kazakhstan.
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Transition Metal Dichalcogenides

Electronic and Optoelectronic Applications Based
on ReS,

Yan Xiong, HuaWei Chen, David Wei Zhang, and Peng Zhou*

Reyleo kAt - '~ Schematic diagram of few-layer

lopotronic Neuromorphic Devices

s e WILEY-VCH ReS2 based photodetector


https://sci-hub.se/https:/doi.org/10.1002/pssr.201800658

E3S Web of Conferences 258, 12012 (2021)

UESF-2021

https://doi.org/10.1051/e3sconf/202125812012

Current state of production and consumption of Kaerbek Argimbaev"", Dmitry Ligotsky?, and Egor Loginov?

rhenium abroad

2% 204, 6% 2%

72%

Fig. 4. Structure of consumption of rthenium products in the USA (2018).

29, !

Salts used in industry and research

rhenium
Stocks

Salts

Powder, fillets, rods, wire, etc..
Heat treated alloys
Thermocouples

Chemical industry

Rhenium is used in platinum-rhenium catalysts which in turn are primarily used in making lead-free, high-octane gasoline
and in high-temperature superalloys that are used to make jet engine parts. Other uses:

* Widely used as filaments in mass spectrographs and in ion gauges.

* An additive to tungsten and molybdenum-based alloys to increase ductility in these alloys.

* An additive to tungsten in some x-ray sources.

* Rhenium catalysts are very resistant to chemical poisoning, and so are used in certain kinds of hydrogenation reactions.

* Electrical contact material due to its good wear resistance and ability to withstand arc corrosion.
* Thermocouples containing alloys of rhenium and tungsten are used to measure temperatures up to 2200 °C.
* Rhenium wire is used in photoflash lamps in photography.

* For use in booster rocket engine

%, Z® T /
https://www.refractorymetal.org/overview-of-the-refractory-metal-rhenium/ A;: '2 ARM V //AR,M

e

https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/34/e3sconf_uesf2021_12012.pdf

Molybde Rhenium Wir Rhenium Pellet Rhenium Rod
Rhenit m»«\l)) Foil
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Isotope Applications:

Stable Rhenium Isotopes - Re Isotopes

Nominal Accurate %o Natural Chemical Enrichment
Mass Mass Abundance Form Available %
185 Re 184.952951 (3) 37.40 (2) metal 94 - 97+
187 Re 186.955744 (3) 62.60 (2) metal 95 - 99+

2 +isused for research in nuclear physics;
32}'}39?“ * is used for Re-186 radionuclide production (can be

- NA: 37.4% used in life science for healthcare and medical
, applications and pharmaceuticals industries);

Re-187: °is used for Os-189m radionuclide production (can
18695575 ¢ be used in life science for healthcare and medical
-~ applications and pharmaceuticals industries);
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10"

10°

10’

10°

Rhenium
186.2

10°
Major industrial metals in red
Precious metals in purple
Rare-earth elements in blue

Abundance, atoms of element per 10° atoms of Si

Nipponium asa  Walter Noddack, Ida Tacke-Noddack, Otto Berg
new element
(Z=75) separated  First found Rhenium in columbite and

by the Japanese  platinum ores, 1925.

chemist,
‘ Masataka
- Ogawa and his — 2NH,ReO,+7H,—2Re+8H,0+2NH,
IDA TACKE son Eyjiro
NODDACK Ogawa: 1908.
1826~ 4978 https://www.youtube.com/watch?v=VRccwkEmOYg&t=3s
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Ida Noddack Tacke (25 February 1896 in Wesel - 1978) was a German chemist and physicist. With her husband Walter Noddack she
discovered element 75 Rhenium. She correctly criticized Enrico Fermi's chemical proofs in his 1934 neutron bombardment experiments, from
which he postulated that transuranic elements might have been produced, and which was widely accepted for a few years. Her paper, "On
Element 93" suggested a number of possibilities, centering around Fermi's failure to chemically eliminate all lighter than uranium elements in
his proofs, rather than only down to lead. The paper is considered historically significant today not simply because she correctly pointed out
the flaw in Fermi's chemical proof but because she suggested the possibility that it is conceivable that the nucleus breaks up into several
large fragments, which would of course be isotopes of known elements but would not be neighbors of the irradiated element.” In so doing
she presaged what would become known a few years later as nuclear fission. However Noddack offered no theoretical basis for this
possibility, which defied the understanding at the time, and her suggestion that the nucleus breaks into several large fragments is not what
occurs in nuclear fission. The paper was generally ignored. Later experiments along a similar line to Fermi's, by Irene Joliot-Curie, and Pavel
Savitch in 1938 raised what they called "interpretational difficulties” when the supposed transuranics exhibited the properties of rare earths
rather than those of adjacent elements. Ultimately in 1939 Otto Hahn and Fritz Strassmann, working in consultation with long term
colleague Lise Meitner (who had been forced to flee Germany) provided chemical proof that the previously presumed transuranic
elements were isotopes of Barium. It remained for Meitner and her nephew Otto Frisch utilizing Fritz Kalckar and Neils Bohr's liquid drop
hypothesis (first proposed by George Gamow in 1935) to provide a theoretical model and mathematical proof of what they dubbed nuclear

fission ( Frisch also experimentally verified the fission reaction by means of a cloud chamber, confirming the massive energy release)
https://physicstoday.scitation.org/doi/10.1063/PT.3.2817

https://www.chemeurope.com/en/encyclopedia/Ida Noddack.html
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https://www.chemeurope.com/en/encyclopedia/Otto_Hahn.html
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https://www.chemeurope.com/en/encyclopedia/Transuranium_elements.html
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https://www.chemeurope.com/en/encyclopedia/George_Gamow.html
https://www.chemeurope.com/en/encyclopedia/Nuclear_fission.html
https://www.chemeurope.com/en/encyclopedia/Ida_Noddack.html
https://physicstoday.scitation.org/doi/10.1063/PT.3.2817
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2009 https://doi.org/10.1016/].anucene.2009.09.012 e

Annals of Nuclear Energy
Volume 36, Issues 11-12, November—December 2009, Pages 1676-1680

i §

Prediction of the correct measured activity of ¥Re and 8Re from reactor produced natural rhenium

B. Leila Moghaddam, Saeed Setayeshi,
Mohammad G. Maragheh, Reza Gholipour

Abstract. To optimize the cost effectiveness of 186Re
and 188Re production, which have recently been used as
radio pharmaceuticals for therapeutic purposes, we
designed an artificial neural network (ANN) to evaluate
the activity of combined %®Re+ 18Re. One of the
production ways is the (n,y) reaction of natural rhenium
which leads to combined %Re + 18Re. Using the
counted activity of 18Re + 18Re mixtures by a well type
isotope calibrator, the precise activity of 1¥Re and 188Re
Is obtained by the ANN. A back-propagation ANN was
trained using 30 activities of mixed 18Re + 18Re. The
performance of the ANN was tested by Early-Stopping
validation method, and the ANN was optimized with
respect to its architecture. The response of the ANN
shows significant precision that may be used for
medical application of 186Re + 188Re mixtures.

187TRe 3 188Re L 5 188()g (stable)
’y = 155 keV(15%), Bpa = 2.12 MeV

16.98h

using an artificial neural network

: B ,89.25 h
185Re — 186Re — " 18603 (stable)

v = 136 keV(9%), — 1.08 MeV

max

~,169h

Decay schemes

CEya,
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122.6
633 keV
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Table 3. IREN parameters.

Parameter Project I Stage II Stage
Peak current (A) 15 15-25 1.5-25
Repetition rate (Hz) 150 25 50
Electron pulse duration (ns) 250 100 100
Electron energy (MeV) 212 3242 45-65
Beam power (kW) 12 0.1-04 0.3-12 https://doi.org/10.3390/qubs1010006
Neutron intensity (n/s) 2x 108 3x 101 6x 101 http://www.jinr.ru/posts/128935/
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. tgt | .I.:ts D : - Rhenium resonance parameters from neutron capture and
20 17 e e transmission measurements in the energy range 0.01 eV to 1 keV
Progress in Nuclear Energy

o B.E. Epping <", G. Leinweber ¢, D.P. Barry ?, M,J. Rapp ?, R.C. Block ?, T,J. Donovan ?,
journal homepage: www.elsevier.com/locate/pnucene | oo Y Danon b, S Landsberger ‘ T - —

https://doi.org/10.1016/j.pnucene.2017.04.015

Abstract. Rhenium is a refractory metal with potential uses in nuclear reactor applications,
particularly those at very high temperatures. Measurements have been made using natural samples.
Natural rhenium consists of two isotopes: 18Re (37.40%) and ¥’Re (62.60%0). The electron linear
accelerator (LINAC) at the Rensselaer Polytechnic Institute (RPI) Gaerttner LINAC Center was used
to explore neutron interactions with rhenium in the energy region from 0.01 eV to 1 keV. Neutron
capture and transmission measurements were performed by the time-of-flight technique. Two | fFrewen
transmission measurements were performed at flight paths of 15 m and 25 m with °Li =
glass scintillation detectors. The neutron capture measurements were performed at a flight path of
25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted
from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters
and their uncertainties is presented. The uncertainties in resonance parameters were propagated from a
number of experimental quantities using a Bayesian analysis. Uncertainties were also estimated from
fitting each Re sample measurement individually. The measured neutron capture resonance
integral for ¥°Re is (4 + 1)% larger than ENDF/B-VII.1. The capture resonance integral
for 18’Re is (3 + 1)% larger than ENDF/B-VII.1. Other findings from these measurements include: a
decrease in the thermal capture cross section for ¥°Re of (2 + 2)% from ENDF/B-VIIL.1; a
decrease in the thermal capture cross section for '¥’Re of (3 £ 4)% from ENDF/B-VIL.1; a "} LR
decrease in the thermal total cross section for '®Re of (2 + 2)% from ENDF/B-VII.1; and a P )
decrease in the thermal total cross section for '#’Re of (6 + 5)% from ENDF/B-VII.1. b ' ]
Considering the uncertainties, none of the indicated changes in thermal cross sections represents
a statistically significant change from ENDF/B-VII.1.
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2018 The 187Re/18’Os abundance ratio changing with the 18’Re  s-nuclei N R R
parent nucleus half-life can be a good chronometer for the r-process. G s
SWRe \ p-decay However, slow neutron-capture process (S-process) — LR
half-life is 4.35X 10"y through an isomer state of 1%Re (T,, = 0.2 Myr) may '“Re(: - *“'Re -
daughter contaminate the 187Re/'870Os abundance ratio. It is T AN
— necessary to evaluate a contribution from 18mRe created \ 51
s from the 185Re(n, y) 8MRe reaction. R IR ww |
Persistent Quest Research Activities 2005 (jaea.qo.jp)

EPJ Web of Conferences 178, 03005 (2018) sflow of S-process

CGS16 flow of r-process

Neutron capture cross section of '*Re leading to ground and isomer states
of 1¥°Re in the keV-neutron energy region https://doi.org/10.1051/epjconf/201817803005

T. Katabuchi!-*, K. Takebe!, S. Umezawa', R. Fujioka!, T. Saito!, and M. Igashira’

IResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

Abstract. The neutron capture cross section of 1®Re was measured in the astrophysically important energy
region. Measurements were made using a neutron beam from a “Li(p,n)’Be neutron source with energies ranging
from 3 to 90 keV. Two different experimental techniques, time-of-flight (TOF) and activation methods, were
employed. In the TOF experiments, the total neutron capture cross section of 18Re was determined by the
pulse-height weighting technique. In the activation method, the partial capture cross section leading to the
ground state of 1¥Re was measured by detecting decay y-rays from neutron activated samples. The present
cross section values were compared with evaluated cross section data and previous measurements. The difference
between the TOF and activation results was smaller than experimental uncertainties. This suggests that the
production cross section of isomer states of 18Re is very small.

lﬂlﬁﬂi

E STATE KEY LABORATORY O!
nm PULSED RADIATION smuunos
N,

/ “\nmnnwmmsm

Joint Institute for Nuclear A
ISINN-29 e e WL SFINPISZSRENE
fz‘?ﬁfp?f&@?‘ f L :! » FRANK LABORATORY OF

NEUTRON PHYSICS, JINR, RUSSIA



https://doi.org/10.1051/epjconf/201817803005
https://rdreview.jaea.go.jp/tayu/ACT05E/04/0403.htm

FOCYQAPCTBEHHAA KOPMOPALIA MO ATOMHOWM SHEPTM «POCATOM»

\llig
1o

Production of the 1836mRe isomer in nuclear reactor

Koltsov, V.V. Production of the 8mRe Isomer in Nuclear
Reactors. Phys. Atom. Nuclei 84, 1817-1820 (2021).
https://doi.org/10.1134/S1063778821090209

Vladimir Koltsov

Khlopin Radium Institute Saint-

Petersburg

E-mail: vladimir-koltsov@yandex.ru
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The 18omRe isomer is of interest for creating an isomeric energy source
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Possible reactions for the formation of the 186mRe isomer

L
1 L n=7359
l

(n,7) l“{ (n,2n") En>7359keV

8 + 149
2.0-10% y

SI2 + 0 1= 0 512 + 0
T T T JTIIIII I / i I T 1 0
stab. é 4.35-10
185 R 186 g 004N 187 Re y
nat. 37.4 % nat. 62.6 %

1. The integral cross section for the formation of the 186m isomer Re:
Ot © 300 mbar.

1. Excitation of the isomer during inelastic scattering of neutrons by 86Re
nuclei is not significant (low concentration of 86Re).

2. Restriction on the integral cross section of o(n,2n) < 10 mbar.

3. Therefore, the main isomer formation reaction is (n, y).



(harns)

Cross Section

Physics of Atomic Nuclei, vol. 84, no. 11, Dec. 2021, pp. 1817

Formation of the 186™Re isomer in the reaction (n, 2n)

— T 1 1. Forthe (n, 2n) reaction, neutrons with

' an energy of more than 8 MeV are
required.

2. 2. Assuming the neutron fission
spectrum in this energy range, it can be
considered that approximately 0.5% of

2.0 —

1.5F -

top \ ] neutrons have energy more than 8 MeV.
: 1 3. Total cross section ( n, 2n) of the
05T i reaction < 2000 mbar — integral cross
[ I section less than 100 mbar.
ot /4 4 Inasimilar reaction (n, 2n) on 1°Ir, the
D ncttent Eneray G 2” isomer is formed with a probability of

3% of reactions.
5. It can be assumed that the integral cross
Total cross section for the 8’Re (n, 2n) reaction section for the formation of the 186M Re
as a function of the neutron energy. iIsomer is less than 10 mb.

O6pazoBanue u3omepa ¥MRe B peakiuu (n , 2n )
https://indico.cern.ch/event/839985/contributions/3985315/attachments/2125013/3577580/Koltsov_-_Production_of Re_.pdf
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Measurements of rhenium isotopic composition in low-
abundance SampleSi https://pubs.rsc.org/en/content/articlepdf/2020/ja/c9ja00288;j

Mathieu Dellinger (2) *2 Robert G. Hilton ? and Geoffrey M. Nowell {)?

2 Department of Geography, Durham University, DH1 3LE Durham, UK. E-mail: mathieu.dellinger@durham.ac.uk

b Department of Earth Sciences, Durham University, DH1 3LE Durham, UK

Abstract

Rhenium (Re) is a trace element whose redox chemistry makes it an ideal candidate to trace a range of geochemical processes.
In particular, fractionation of its isotopes '8"Re (62.6% abundance) and 18°Re (37.4%) may be used to improve our understanding
of redox reactions during weathering, both in the modern day and in geological archives. Published methods for measurement
of Re isotopic composition are limited by the requirements of Re mass to reach a desirable precision, making the analysis of
many geological materials unfeasible at present. Here we develop new methods which allow us to measure Re isotope ratios
(reported as 5187Re) with improved precision: +0.10%o (20) for a mass of Re of ~1 ng to +0.03%0 (20 for a mass of Re of >10 ng.
This is possible due to the combination of a modified column chemistry procedure and the use of 1013 Q amplifiers for
measurement via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). For river water samples (with Re
concentrations typically ~1072 g g'1) we design a field-based pre-concentration of Re that can be used with large volumes of
filtered water (5-20 L) shortly after sample collection to provide abundant Re for isotope analysis. As a result of these
developments we provide new measurements of 5187Re in standards reference materials (§187Re values range from -0.06 +
0.07%o to +0.19 + 0.05%o0) and a seawater standard (5'87Re = +0.10 + 0.04%s«), providing impetus for further exploration of the Re

isatope system.


https://pubs.rsc.org/en/content/articlepdf/2020/ja/c9ja00288j

ad .~
BULGARIAN
ACADEMY

of SCIENCES
1869

Rhenium is traditionally obtained as a by-product of roasting and hydrometallurgical treatment of
molybdenum and copper concentrate

Phytomining: New Method for Rhenium

» Ognyan Bozhkov

Christina
Tzvetkova

Institute of General

and Inorganic

Chemistry, Bulgarian
Academy of Sciences

Sofia, Bulgaria

»= Ludmila Borisova
Russian Academy of

Sciences
Moscow, Russia

» Boris Bryskin

Bryskin Metailurgical

Consulting
Palm Coast, Fla.

Application of
Re phytomining
is inexpensive
and environ-

mentally

friendly and it

leads to

remediation of

exhausted
of copper

mines and
ore-dressi
regions.

Asarsl opsn pit copper mine, Bulgaria. f
7 friendly grean

soils

henium (Re) is one of the rarest ele-
R ments in the Farth’s crust (7 <10%%),
and is one of the ten most expensive
metals on the world marketitl. Tt has unique
physicochemical properties that allow its use in
paration of high- temperature superalloys;
the physicochemical prog-
erties of Ni-Re Re, Pt-Re, and ather super
alloys. The main application of Re is Ni-Re alloy
in preparing turbine blades for aircraft engines
and gas turbines. The main world producers of
Re are Chile, Kazakhstan, France, Germany,
Russia, US,, China, Great Britain, the Nether
lands, and Poland''l.

The main consumers of Re workd produc
tion are: Rolls Royce (28%), General Electric
(28%), and Pratt & Whitney (12%) in the man-
ufacture of superalloys used in aerospace in-
dustry and energetics. Re-Pt alloys account for
14% of Re use as catalysts for the production of
lead-free gasoline. High-temperature thermo-
couples, x-ray sources, self-
cleaning electrical contacts,
and other products consume
18% Re. About 0% of Re is ob-
tained as a by-product of the
pyro- and hydrometallurgical
treatment of molybdenum and
copper ores and concentrates,
and 20% is obtained from Re-
containing wastes, such as al-
loys and catalysts.

The world production of
Re in 2008 was 45 tons, while
the annual demand of Re is
about &0 tons'*l. Because world

rhenium is an

B} ADVANCED MATERIALS & PROCESSES « MAY 2012

production of Re cannot meet industry needs,
there is a continual search for new Re sources
and new, more effective technologies for its
production. Current technologies for produc
ing rhenium containing concentrates and ex-
tracting Re from them are not effective
enough. During these processes, part of the
rhenium is lost and dispersed as volatile Re,0,
in surrounding soils and as ReOy ions in in
dustrial waste solutions and waterl2l. The scat
tered rhenium in the environment around
copper and molybdenum mines and copper
processing factories is a potential source for
rhenium production.

How can this rhenium
be collected profitably?

The unique property of rhenium to accu-
mulate and concentrate in the green parts of all
kinds of vegetation can be used to this aim. The
plant biosphere is a natural collector and con
centrator of Re from the sur-
face environment (soils and
waters)i*. The most mobile
and bicavailable species of
rhenium in the surface envi-
ronment is ReQy lonsi¥. The
vegetation inareas of copper
mines and copper processing
works is enriched in rhenium
in amounts many times ex
coeding its matural oceur:
rence®. It is known that
rhenium oveurs in copper

and  molybdenum sulfide
ores as Lhe waler insoluble
ReS, %

There are sources of
bioavailable ReQ, ions in
these arcas. This is e oxida

tion zone of ore deposits and
dissolved oxygen in under-

ground, hydrothermal, and
surface waters. Some oxidation steps of the
technology for producing copper and molyb-
denum concentrates by bacterial leaching with
acidithiobacillus ferrooxidans in H,S0Oy solu-
tion in presence of Fe* ions also generate ReO),;
ions, which are dispersed in the surface envi

ronment of copper mine regions through waste
waters and rain BlI™%, Volatile Re,0, is gener

ated during roasting of the concentrate, which
is dispersed as a gas emission in the environ

ment and settles on the soils, where in contact
with water, it easily transforms to ReQ, jonst!,

> Cleaner

% Production

Journal of Cleaner Production ,;@g%‘
Volume 328, 15 December 2021, 129534

On the uptake of rhenium by plants:
Accumulation and recovery from plant
tissue

Christina Tzvetkova ? 2, =, Luis A.B. Novo ® 9 =, Stela Atanasova-Vladimirova ¢,

Tsvetan Vassilev ©

https://doi.org/10.1016/j.iclepro.2021.129534

Show more

+ Addto Mendeley of Share 93 Cite

https://doi.org/10.1016/j.jclepro.2021.129534 » Get rights and content »

This study was the first to ever employ Scanning electron
microscopy (SEM) imaging analysis and Infrared (IR)
spectrometry to investigate the accumulation of Re in plants.
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1- dry alfalfa
2- finely ground dried alfalfa
3- ammonium perrhenate powder

Extraction and determination of

Re in alkaline and

aqueous

extracts spectrophotometrically or

using TXRF technique

GERilhenl

Highly selective and sensitive catalytic spectrophotometric

determination of ng amounts of Re

The reaction is based on the catalytic action of Re (IV) on the reduction of organic
reagent DMDTO with Sn (II) in an alkaline medium, yielding a blue colored product
with A max at A=634 nm. The calibration graph is linear in the range 2-15 ng Re/ml

Rapid spot semi-quantitative

test

Reference scale

OO.. L

15

Sample

Re

Quantitative Spectrophotometric
determination

Thermo Evolution 160 UV-vis spectrophotometer

Thermo Scientific

Total X-ray Fluorescence Spectroscopy (TXRF)

An analytical technique for determining elemental content in liquids, solids and loose powders. The main principle is
that atoms, when irradiated with X-rays,
associated with a specific wavelength and energy of the fluorescence radiation. The concentration is calculated using
the fluorescence intensity. TXRF analysis is based on internal standardization: an element, which is not present in the

sample, must be added for quantification purposes. In this case gallium (Ga).

Preparation steps for the TXRF
analysis of the examined samples

XFlosh detector

X-roy tube

(Mo cnode) Monochromator

(Ni/C Mulslayer)

Polished carrier disc

with somple

S2 PICOFOX spectrometer

Schematic working principle of the

radiate secondary X-rays - the fluorescence radiation. Each element is

TXRF spectrum of aqueous extract

from dried alfalfa
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Rhenium is traditionally obtained as a by-product of roasting and hydrometallurgical treatment of
molybdenum and copper concentrate

microorganisms

Article

Arthrospira platensis as Bioremediator of Rhenium Mono- and
Polymetallic Synthetic Effluents

Inga Zinicovscaia 1-2-3*(, Liliana Cepoi *(, Ludmila Rudi *", Tatiana Chiriac *, Nikita Yushin !

and Dmitrii Grozdov !

check for
updates

Citation: Zinicovscaia, I; Cepoi, L.;
Rudji, L.; Chiriac, T.; Yushin, N.;
Grozdov, D. Artlrospira platensis as
Bioremediator of Rhenium Mono-
and Polymetallic Synthetic Effluents.
Microorganisms 2022, 10, 2109.
https:/ /doi.org /103390,

microorganisms10112109

Department of Nuclear Physics, Joint Institute for Nuclear Research, 6 Joiio: urie Str., Dubna 1419890, Russia
Department of Nuclear Physics, Horia Hulubei National Institute for kD in Physics and

MNuclear Engineering, 30 Reactorului Str., PO. Box MG-6, 077125 Bucharest, Romania

Laboratory of Physical and Quantum Chemistry, Institute of Chemistry, 3, Academiei Str.,

MD-2028 Chisinau, Moldova

Laboratory of Phycobiotechnology, Institute of Microbiology and Biotechnology, 1, Academiei Str.,
MD-2028 Chisinau, Moldova

*  Correspondence: zinikovskaia@mail.ru; Tel.: +7-4962165609

Abstract: Rhenium is a scarce and highly important metal for industry and technology. In the present
study, the cyanobacterium Arthrospira platensis (Spirulina) was used to remove rhenium and related
elements (Mo and Cu) from mono- and polymetallic synthetic effluents. Metal ions in different
concentrations were added to the culture medium on the first, third, and fifth days of biomass
growth, and their uptake by the biomass was traced using 1CP-AES technique. The accumulation
of rhenium in the biomass was dependent on the chemical composition of the effluents, and the
highest uptake of 161 mg/kg was achieved in the Re-Cu system. The presence of rhenium, copper,
and molybdenum affected the productivity of Spirulina biomass and its biochemical composition
(proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll « and S-carotene). With
the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced
increase in productivity and protein content was observed. The presence of copper in systems has a
negative effect on biomass productivity and biochemical composition. Arthrospira platensis may be of
interest as a bioremediator of rhenium-containing effluents of various chemical compositions.

Keywords: Arthrospira platensis; biochemical analysis; proteins; rhenium; molybdenum; copper;
bioremediation

The presence of rhenium, copper,
and molybdenum affected the
productivity of Spirulina biomass
and its biochemical composition
(proteins, carbohydrates, lipids,
phycobiliproteins, the content of
chlorophyll &alpha: and &beta:-
carotene).

With the growth of biomass in the
presence of rhenium or rhenium
and molybdenum, a pronounced
increase in productivity and
protein content was observed.

The content of Re, Cu, and Mo in
Spirulina samples was determined
using an inductively coupled
plasma-optical emission
spectrometer, PlasmaQuant 9000
Elite (Analytik Jena, Jena,
Germany).
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IBR-2 pulsed (epi)thermal neutron reactor  https://ibr-2.jinr.ru/

power.
pulse®

Core

MINISTRY OF EDUCATION AND RESEARCH Moveable
INSTITUTE OF CHEMISTRY

inga zinicovscaia thesis.pdf (cnaa.md)

The title of manusenpt: f) .

UDS. 504.45,06(043.2) +579.22:546.3(043.2)

Stationary reflector

Water moderator

at mean power 2 MW

BJN (project)
ZINICOVSCAIA INGA

IMPACT OF SOME METALS DETERMINED BY NEUTRON
ACTIVATION ANALYSIS ON THE QUALITY OF THE
ENVIRONMENT

EPSILON//

145.01. ECOLOGICAL CHEMISTRY

Doctoral thesis in chemistry

Rhenium is a scarce and highly important
metal for industry and technology.
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BR-1 Iv. Boyadjov, R. De Neve, J. Hoste, Determination of rhenium in molybdenites
The oldest by neutron activation analysis, Analytica Chimica Acta, Volume 40, 1968,
active reactor Pages 373-378, ISSN 0003-2670, https://doi.org/10.1016/S0003-

in the world 2670(00)86750-1.

https://www.sckcen.be/en/infrastructure/brl-belgian-reactor-1
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In-core experiments:

~70 1irradiation experimental channels
Maximum thermal flux 4x10" n/cm?®s
Low neutron flux gradient

Possibility for online instrumentation
Pneumatic rabbit systems
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Iv. Boyadjov, R. De Neve, J. Hoste,
Determination of rhenium in molybdenites by neutron activation analysis, Analytica Chimica Acta, Volume 40,

1968, Pages 373-378, ISSN 0003-2670, https:/doi.oreg/10.1016/S0003-2670(00)86750-1.

Interest in rhenium has increased in recent years because of its use in different branches of various new technologies.
As the abundance of rhenium is generally low in rocks and minerals, sensitive methods for its determination are
required. Neutron activation analysis appears to be one of the most appropriate. This technique has been used to
determine rhenium in materials such as enzymes!, marine organisms? rocks®3, ores®, meteorites’?, tectites!?,
granites!!, electrolytic zinc sulphate solutions!'? and molybdenites!*!5. In all these determinations, separation
techniques such as precipitation, distillation, ion exchange and liquid-liquid extraction have been applied ; most of the
procedures involve rather complicated chemical separations, witll low chemical. yields and are time-consuming. The
proposed method for the determination of rhenium in molybdenites by thermal neutron activation analysis, is based on

a simple extraction with pyridine and y— or B—counting. It applies simple operations in a very short time, thus ensuring
quantitative recovery.

TABLE [
NUCLEAR DATA OF RHENIUM, MOLYBDENUM AND TECHNETIUM
R - Natural Abundance Thermal Isotope Half- y-Energy f-Encrgy
Pt e Mot isolope (%) cross-seclion Sformed life (MeV) LEmax (keV)
(barn)

DETERMINATION OF RHENIUM IN MOLYBDENITES BY NEUTRON
ACTIVATION ANALYSIS

188Re 37.97 104 108 Re 8gh 0.003,0.128,0.137, 1072(70 %)
it el St Gt ninaiy Ghows Bl 0.631, 0.769 934(22%)
(Reebved Septeme 150h. 1067 307(0.11%)
187Re 62.93 69 1A8mMRe 19m 0.064, 0.092, 0.106
_ _ 18Re  17h 0.003,0.155,0.477, 2116(80%) 150C
Interest in rhenium has increased in recent years because of its use in different () 2
Pranches of v:u:ious new tv:fr!nologits. As lh:_ nbundzm:.c o(lrlwnium is gcnem‘lly low 0. 3
B il bkl moat S oat f e ost appeupiiaes, Thi ek b *3Mo 15.84 0.006 mMo  G.9h 0.684, 0.148
used to determine rhenium in fals such as enzymes!, marine i 3Mo 23.78 0.51 Mo 67 h 0.181, o. 740 ]420(2 %)
rocks3-%, orest, A i A i . electrolytic zinc wlphatc sol- o
utions'? and molybd: , In all these d i 1 278(75 A,)
such as p on and liquid- |l(|1“d extraction have
b«mpphm ‘most of the procedures involve rather complicated chemical separations, WmTc 6h 0.140 ]
e e, v kb WTc 212+ 100y — 310 (100%)
I coauting. It mepli sl Opuriooe s & vety ,'.’.‘o‘f'?‘i'iﬁi‘. e i 100Mo 9.63 ©.20 10iMo  14.6m ©.191, 0.510, 0.590,
quantitative recovery. 1.02
101 ¢ 14.0m 0.130, 0.186, 0.307
= Joint Institute for Nuclear s FAPERSCIS N\ B E SRR S W
| S INN 2 9 Research \@P ;E\'\‘\E* BTUR ) EREATRE
RANK LABORATORY OF

THE STATE KEY LABORATORY OF
INTENSE PULSED RADIATION SIMULATION
AND EFFECT, NINT, CHINA

QY3  FomTSEEmAmEEWI : ‘
29' Intemational Seminar on Interaction of Neutrons with Nuclei i LN NEUTRON PHYSICS, JINR, RUSSIA




et AVAE ot
e INRNE Investigation of Rhenium by Neutrons -

| INAA Vil
PGNAA RNAA

o] el e el ] oef ol g s e s o e fu g e el

Lol B BRI

Fig. 3.10: Periodic Table of Elements indicating which neutron activation technique is commonly
applied for the determination of a certain element.
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Figure 3. Sensitivity of PGAA for the elements [9]. Shown are estimated limits for the detection of traces as given

for the instrument PGAA at MLZ. These limits also depend on the matrix material.
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Research progress on in situ on-line measurement technology of elemental composition of PGNAA.

‘I PGNAA technique Hm K %’

Lanzhou university

Challenges

With the development of other analytical methods and instruments, such as| ICP-MS] AMS and LIF. PGNAA

and|NAAlwas greatly challenged.

.Ne Analysis Method

1.0 | 100 10 [1000|1000 1.0 | 0.1
Ca|Sc| T |V C|Mn|Fe|Co|] Ni [Cul2n]| Gal|Ge| As Br | Kr ICP-MS 1E-12
10 |1000( 0.1 190 1.0 | 10 | 0.1 [100 | 1.0 |100 | 10 | 10 | 1.0 | 100 |0.01 0.1 1.0 NAA 1E-14
Rb | Sr Rh Ag | Cd Xe
10 | 100 100 1.0 10 1.0 AMS 1E'16
SXRF 1E-17
LIMS 1E-18
LIF 1E-22
8 ORDERS to Laser Introduced Fluorescen:

Fast Newtron Activation anatvsi A nalytical capabilities and detection limits for elements

Prompt Gamma Activation Analysis

W v oo 2 s by NAA and PGNAA.

*Numbers represent ppm
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Progress of Neutron Reaction Data
Measurement at CIAE

Xichao Ruan

China Nuclear Data Center, Key Laboratory of Nuclear Data

China Institute of Atomic Energy (CIAE)

http://isinn.jinr.ru/past-isinns/isinn-26/0529PM/T8.pdf

The 26t International Seminar on Interactions of Neutrons with Nuclei
May 28t — June 1st, 2018, Xian, China
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600 kV Cockcroft-Walton neutron generator

HPGe detector array for high resolution gamma
spectroscopy

*6 Clover and

6

HPGe detectors

*Mainly used for
(n, 2ny) and (n, n’y)

measurement

35

89Zr(n,2n)%Zr %6Zr(n,2n)%Zr 92Mo(n,p)®2Nb %8Mo(n,r)**Mo
103Ag(n,2n)108mAg 113In(n,2n)112min 113]n(n,n")113min 115]n(n,2n)14min
*> 1000 hours beam time 15n(n,p)115Cd 115In(n,a)"12Ag 127)(n,2n) 26| 124Xg(n,2n)12°Xe
every year for different
SEoTs 134Ba(n,2n)13#¥moBa 134Ba(n,p)13m+aCs 134Ba(n,a)31mXe 137Ba(n,p)1¥’Cs
136Ce(n,2n)35Ce 138Ce(n,2n)1¥"mCe 140Ce(n,2n)1*Ce 140Ce(n,p)14°La
lons pandd
151Eu(n,r)1%2mEu 181Eu(n,r)1520Eu 183Eu(n,2n)1529Eu 183Eu(n,r)1%Eu
Current Maximum 1 mA (DC)
~30 pA (pulsed) 165Ho(n,r)1eémHo 169Tm(n,2n)1eMTm 169Tm(n,3n)1¥Tm 169Tm(n,r)17°Tm
Pulse width | ~2 ns 180Hf(n, r)18THF 179Hf(n, 2n) 17am2HE 180Hf(n,2n)17m2Hf | 181Ta(n,2n)180mTa
Neutron yield | 10" n/s for DC .
10° n/s for pulsed 14 Mey 185Re(n,2n)®4mRe 185Re(n,2n)8meRe 187Re(n,2n)'%oRe 187Re(n,2n)'%mRe
10°n/sforDC  25mev 138Pt(n,2n) 7Pt 157Au(n.2n)%6Au 157Au(n,3n)1%5Au 204Ph(n,2n)2%Pb
108 n/s for pulsed
- BEEhPYETIR S W EE ARSI S ﬁ
!ggﬁ! Eﬁgﬁﬁgﬁig .Pf :,;V : ’;A_B(;RAT?ORV OF ) m!snn KEY. Lﬁzm m ‘ ‘
2“23 2™ Interm " NEUTRON PHYSICS, JINR, RUSSIA INTENSE PULSED RADIATION SIMULATION 4

AND EFFECT, NINT, CHINA



BULGARIAN e Investigation of Rhenium by Neutrons

1869

Eur. Phys. J. A (2016) 52: 148 The neutron cross-section functions for the reactions

= 187Re(n, ) 184Ta, 187Re(n, 2n)18%Re and 85Re(n,2n)1%Re THE EUROPEAN
DOI 10.1140/epja/i2016-16148-4  in the energy range 13.08-19.5 MeV PHYSICAL JOURNAL A

2016

N. Jovanéevié¢!?, L. Daraban H. Stroh', S. Oberstedt!>®, M. Hult', C. Bonaldi', W. Geerts', F.-J. Hambsch',
G. Lutter!, G. Mal issens’, and M. Vidali!

Eur. Phys. J. A (2019) 55: 27 Activation cross-sections for the 8Re(n, 2n) reaction and the

: [ CI).]a‘ et DJC |a||gE Of MeV

Indian Journal of Pure & Applied Namrata Singh, A Gandhi, Aman Sharma, Mahesh Choudhary & A Kumar
Physics Vol. 58, April 2020, Excitation functions of (n,p) and (n,2n) reactions of tantalum,
2020 pp. 314-318, rhenium, and iridium in the neutron energy range up to 20 MeV

https://inspirehep.net/files/e8257¢cel
1d5b9¢125482be7617ad93c9

Chinese Physics C, 2021, 45 (7): Fengqun Zhou (& £ 8#), Yueli Song (3R A i), Xinyi Chang (§7.0»}&)er al. Cross section
202 1 074101, measurements for (n,2n), (n,u), and (n,p) reactions on rhenium isotopes around 14 MeV

https://doi.org/10.1088/1674- neutrons and their theoretical calculations of excitation functions

1137/abf5ca

Chinese Physics C, 2022, 46(5): Yong Li (Z &), Fengqun Zhou (B F %), Yajuan Hao (B [ #8) et al New cross section

2022 054003 hitps:/doi.org/10.1088/1 measurements on tungsten isotopes around 14 MeV neutrons and their excitation functions
674-1137/acdcal

International Joumal of Atomic Tsugio Yokoyama and Masaki Ozawa,
2019  and Nuclear Physics 4/1, Production of Low Activity Rhenium by Transmuting Tungsten Metal in Fast Reactors with
DOI: 10.35840/2631-5017/2512 Moderator
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Eur. Phys. J. A (2016) 52: 148
DOI 10.1140/epja/i2016-16148-4 2016 gﬂﬁsﬁ; :P .I.:I)(I.'E)G:N AL A

Regular Article The neutron cross-section functions for the reactions
187Re(n, a)!3%Ta, ¥7Re(n, 2n)!8®Re and !8°Re(n, 2n)!3*Re
iy in the energy range 13.08-19.5 MeV

.Vg !

N. Jovanéevi¢!?, L. Daraban', H. Stroh!, S. Oberstedt!-?, M. Hult!, C. Bonaldi', W. Geerts!, F.-J. Hambsch',
G. Lutter!, G. Malmem and M Vidalit

Abstract. In the present work, measurements of the cross-section functions for the '*"Re(n,a)'®*Ta,
1%"Re(n,2n)'*°Re and "®Re(n, 2n)'®**Re reactions were performed in the energy range 13.08-19.5 MeV.
We applied the neutron activation technique using several wide-energy neutron beams (NAXSUN), re-
cently developed at the JRC-IRMM. This method involves measuring the activity of the radionuclides
produced in a target by the in energy overlapping neutron beams and a subsequent unfolding procedure.
The present results are the first experimental data on these cross-sections for incident neutron energies
between 15 and 19.5 MeV and may contribute to improving evaluations and nuclear models.

Neutron producing target lonization chamber with 2*°U target

Sample Table 2. Neutron irradiation data. E;: ion energy (with un-
o certainty), E,: neutron energy at 0° relative to the incident
= +—lonlein / ion beam (with uncertainty) and ¢: irradiation time (with un-
& / — _— Neutron target certainty).
Disk No. E; (MeV) E, (MeV) t (s)

¢ \ s ot datupsfor scthiat 3.300(11) 19.78(20) 86921(10)

§ — 2 2.500(11) 18.71(20) 248402(10)

S : 3 2.000(11) 18.10(28) 157632(10)

4 2.000(11) 18.10(28) 166564 (10)

CES it 5 1.500(11) 17.16(30) 231958(10)

G 2 i 6 1.000(11) 15.97(82) 243608(10)

=
Fig. 1. (a) Schematic drawing of the sample setup for activation (not to scale). 7 0.800(11) 15.26(131) 144831(10)

(b) Schematic drawing of the neutron fluence rate monitoring setup during an
activation run (not to scale).
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Table 2. Measured nuclear reactions on rhenium and decay data (taken from [2]). The boldface font is used in the calculation.

Reaction Abundance of target isotope | Half-life of product | E-threshold | Mode of decay E~y Ty
(%) (MeV) (%2) (keV) (%)
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10° _i 10‘4.171ke2vk V225.?31k§\6 eV 384.3 ke\;r536 7k V641,9 ‘7@9\2’0 . \;394.8 ke 903.3 keV
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The excitation functions for (n,p) and (n,2n) reactions up to 20 MeV on Tantalum, Rhenium, and Iridium have been

calculated using the TALYS-1.9 nuclear reaction model code. Different level density models have been used to get a good
agreement between the calculated and measured data. In the present work, we have carried out the TALYS-1.9 calculations
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Cross section measurements for (n,2n),(n,a), and (n, p) reactions on
rhenium isotopes around 14 MeV neutrons and their theoretical
calculations of excitation functions”
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182ml+m2+g

Ta, lg?Rc(n,
Re(n,a)]84Ta, and 'x?Re(n,p)mW reactions were measured at four neutron energies, namely 13.5,

Abstract: Cross-section data of the 185Rc(n,ZM)]MﬂRe, Iste(n,Zn)184gRe, ]gsRc(n,a)
zn)lgﬁg,(m}Re, 187
14.1, 144, and 14.8 MeV, by means of the activation technique, relative to the reference cross-section values of the
93Nb(ﬂ,2.¥1}92mNb reaction. The neutrons were generated from the T(d,n)qﬂe reaction at the K-400 Neutron Generator
at China Academy of Engineering Physics. The induced y activities were measured using a high-resolution y-ray
spectrometer equipped with a coaxial high-purity germanium detector. The excitation functions of the six above-
mentioned nuclear reactions at neutron energies from the threshold to 20 MeV were calculated by adopting the nuc-
lear theoretical model program system Talys-1.9 with the relevant parameters properly adjusted. The measured cross
sections were analyzed and compared with previous experiments conducted by other researchers, and with the evalu-
ated data of BROND-3.1, ENDF/B-VIIL0, JEFF-3.3, and the theoretical values based on Talys-1.9. The new meas-
ured results agree with those of previous experiments and the theoretical excitation curve at the corresponding ener-
gies. The theoretical excitation curves based on Talys-1.9 generally match most of experimental data well.

Keywords: cross sections of (n,2n), (n,a) and (n,p) reactions, rhenium isotopes, activation technique,
off-line y-ray spectrometry, theoretical calculations
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Fig. 1. (color online) Part of the y-ray spectrum of rhenium

obtained after 6.78 h of cooling following the end of irradi-
ation; the measurement duration was approximately 3.82 h.
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Fig. 2. (color online) Part of the y-ray spectrum of rhenium

obtained after 125.45 h of cooling following the end of irradi-
ation; the measurement duration was approximately 20.78 h.
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Table 1. Reactions and associated decay data of activation products
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Reaction  “™%™° [ ducts Ty E /keV 1,(%)
"Re(n2n) 3740  “"Re 169d 92093 8.2
“Re(n,2n) 3740  """Re 354d 79207 377

101024 0.092

FRe(a) 3740 TT*Ta 114.74d 1189.04 1649
"Re(n2n) 6260  "“Re  3.7183d 63033  0.0294

"Re(n,0)  62.60 *Ta 87h  414.01 72
“Re (np)  62.60 i 240h 68581 332
“Nb(n,2n) 100 ZNb 10.15d 93444  99.15
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In general, our experimental cross-section values are
consistent,  within  experimental error, with those of

previous experiments and theoretical excitation curves at
the corresponding energies.

Comparison with these evaluation curves shows that the
theoretical excitation curves based on Talys-1.9 code agree
well with the experimental results.

The new measured results in the present study would
improve the quality of the neutron cross section database
and are expected to assist with new evaluations of cross

sections on rhenium

isotopes in the incident neutron

energy range from the threshold to 20 MeV.

In addition, the theoretical

excitation curves are relevant

for the design of fusion reactors and related applications.
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The project "TANGRA" (TAgged Neutrons and Gamma RAys) is devoted to study of neutron-nuclear interactions,
using the tagged neutron method (TNM). The essence of TNM is to register the characteristic nuclear
gamma-radiation, resulting from the interaction of neutrons from the binary d(t, 4He)n reaction with the nuclei of
the substances under study, in coincidence with the accompanying alpha-particles detected by the position-sensitive
alpha detector located inside the neutron generator vacuum chamber.
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