Standard scientist's questions

BULGARIAN ACADEMY

Research SCIENCE BRINGING NATIONS

Joint Institute for Nuclear

P弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

http://flnph.jinr.ru/en/facilities/tangra-project

BULGARIAN ACADEMY of SCIENCES

Investigation of Rhenium by Neutrons

Ruskov I.¹, Kopatch Yu.N.², Tretyakova T.Yu.^{2,3,4}, Skoy V.R.², Fedorov N.A.², Grozdanov D.N.^{1,2}, Gundorin N.A.², Shvetsov V.N.², Sirakov I.A.¹, Jovančević N.⁵, Knežević D.⁵, Badawi M.S.^{8,9}, Thabet A.A.¹⁰, Kumar A.⁷, Gandhi A.¹², Sharma A.⁷, Dongming W.¹¹, Hramco C.², Borzakov S.B.², Zinicovscaia I.², Tzvetkova Chr.⁶, and TANGRA collaboration

¹ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72, Tsarigradsko shose Blvd., 1784 Sofia, Bulgaria, <u>ivan.n.ruskov@gmail.com</u>

- ² Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6, Joliot-Curie Str., 141980 Dubna, Russian Federation, <u>kopatch@nf.jinr.ru</u>, <u>dgrozdanov@mail.ru</u>
- ³ Skobeltsyn Institute of Nuclear Physics (SINP), M.V. Lomonosov Moscow State University Vorob'evy Gory, 119992, Moscow, Russian Federation, <u>tretyakova@srd.sinp.msu.ru</u>
- ⁴ Faculty of Physics, M.V. Lomonosov Moscow State University, 1, building 2, GSP-2, Leninskiye Gory, 119992, Moscow, Russian Federation, <u>na.fedorov@physics.msu.ru</u>
- ⁵ Department of Physics, Faculty of Sciences, University of Novi Sad, 4, Trg Dositeja Obradovica, 21000 Novi Sad, Serbia, <u>nikola.jovancevic@df.uns.ac.rs</u>, <u>miendor@gmail.com</u>
- ⁶ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 11, Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria, <u>hrisi@svr.igic.bas.bg</u>
- ⁷ Department of Physics, Banaras Hindu University, 221 005 Varanasi, India, <u>ajaytyagi@bhu.ac.in, aman.marley1314@gmail.com</u>
- ⁸ Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, ms241178@hotmail.com
- ⁹ Faculty of Advanced Basic Sciences, Alamein International University, Alamein City, Matrouh Governorate, Egypt
- ¹⁰ Department of Biomedical Equipment Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Egypt, <u>abouzeid.thabet@pua.edu.eg</u>
- ¹¹ School of Energy and Power Engineering, Xi'an Jiaotong University, Xianning Road No. 28, Shaanxi Province, 710049 Xi'an, China, <u>huasi_hu@mail.xjtu.edu.cn</u>

¹² Horia Hulubei National Institute of Physics and Nuclear Engineering, 409, Atomists Street, 077125 Măgurele, Romania, <u>gandhiaman653@gmail.com</u>

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

LNP 弗兰克中子物理实验 FRANK LABORATORY OF

RON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY of SCIENCES

Research SCIENCE BRINGING NATIONS TOGETHER

Joint Institute for Nuclear

http://flnph.jinr.ru/en/facilities/tangra-projec

BULGARIAN ACADEMY of SCIENCES

TANGRA Setups consist of a portable generator of "tagged" neutrons with an energy of 14.1 MeV, ING-27, with or without an iron shield-collimator, 2D fast neutron beam profilometer, arrays of neutron-gamma detectors in geometry of daisy-flower (Romashka, Romasha, HPGe), a computerized system for data acquisition and analysis (DAQ).

Number of NaI(TI) detectors: 22 Size of NaI(TI) crystals: hexagoral prism 78 x 90 x 200 mm PMT type: Hamamatsur R1306 Gamma-ray Energy-resolution ~ 7.2 % @ 0.662 MeV Gamma-ray Energy-resolution ~ 3.8 ns @ 4.437 MeV Gamma-ray Time-resolution ~ 3.8 ns @ 4.437 MeV Number of BGO detectors: 18 Size of BGO crystals: cylinder \oslash 76 x 65 mm PMT type: Hamanatsu R1307 Gamma-ray Energy-resolution ~ 10.4 % @ 0.662 MeV Gamma-ray Energy-resolution ~ 4.0 % @ 4.437 MeV Gamma-ray Time-resolution ~ 4.1 ns @ 4.437 MeV

Number of HPGe detectors: 1 Type: Ortec[®] GMX 30-83-PL-S, \$57.5 x 66.6 mm Gamma-ray Energy-resolution ~ 3.4 % @ 0.662 MeV Gamma-ray Energy-resolution ~ 0.3 % @ 4.437 MeV Gamma-ray Time-resolution ~ 6.1 ns @ 4.4437 MeV

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

TANGRA: VNIIA ING-27 Neutron Generator

Based on a sealed DT-tube

Weight: ING-27: 7.5 \pm 0.5 kg; Power Supply and Operation Unit: 2.7 \pm 0.3 kg

TiT-to-front distance : $44.0 \pm 1.4 \text{ mm}$ TiT-to- α -detector distance: $100 \pm 2 \text{ mm}$ Power supply voltage: $200 \pm 5 \text{ V}$ Max Power Supply Current: $300 \pm 30 \text{ mV}$ Consumed Power: < 40 WContinuous Mode: 14-MeV neutrons Initial Intensity: $> 5.0 \times 10^7 \text{ n/s}/4\pi$ Final Intensity: $> 2.5 \times 10^7 \text{ n/s}/4\pi$ Double-side Si α -particles detector Number of pixels: 64 (8x8 strips) Pixel area: 6x6 mm² Distance between strips: 0.5 mm Voltage bias: -250V DC Dark current: < 8 μ A n-tube life-time: > 800 h < ING Duty time >: 18 months

TANGRA: Time-Correlated Associated Particle Method (TCAPM)

The 14-MeV neutron is tagged in time and direction by detecting the associated α -particle, emitted in opposite direction in CMS.

TANGRA: Time-Correlated Associated Particle Method, TCAPM

The 14-MeV neutron is tagged in time and direction by detecting the associated α -particle, emitted in opposite direction

TANGRA-Setup: ING-27 + "Romashka" NaI(Tl)

TANGRA-Setup: ING-27 + "Romasha" BGO

140 140 0

1250

0

Number of BGO detectors: 18 BGO crystals: cylinder (76 x 65 mm) PMT type: Hamamatsu R1307 Gamma-ray Energy-resolution ~ 10.4% @ 0.662 MeV Gamma-ray Energy-resolution ~ 4.0% @ 4.437 MeV Gamma-ray Time-resolution ~ 4.1ns @ 4.437 MeV

創州大学

BULGARIAN ACADEMY

Research SCIENCE BRINGING NATIONS

Joint Institute for Nuclear

P弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

HPGe detector:

Type: Ortec[®]GMX 30-83-PL-S, φ 57.5 x 66.6 mm Gamma-ray Energy-resolution ~ 3.4% @ 0.662 MeV Gamma-ray Energy-resolution ~ 0.3% @ 4.437 MeV Gamma-ray Time-resolution ~ 6.1 ns @ 4.4437MeV

TANGRA-Setup: ING-27 + HPGe

Fig. 2. Scheme of the TANGRA setup with the HPGe detector in the reaction plane: 1 – neutron generator ING-27, 2 - lead shielding, 3 - case of the HPGe detector, 4 - HPGe crystal, 5 - sample. Axis of the experimental setup is indicated by horizontal dashed line. Tritium-enriched target is marked as asterisk. All dimensions are in mm.

Shielding(Pb)

ING-27

Samp

http://flnph.jinr.ru/en/facilities/tangra-projec

17 319

BULGARIAN ACADEMY of SCIENCES

Elements important for Nuclear Science

	Period	1			Nal/	BCO/	UnCo	Ре	riod	ic Ta	able	• 1 -1	L72						18	Orbitals
	1	1 H	2		-Nal/	HpGe	npoe	-						13	14	15	16	17	2 He	ls
Ŭ	2	3 Li	4 Be	-	BGO HpG	/HpG e	e							5 B	6 C	7 N	8 0	9 F	10 Ne	2s2p
	3	11 Na	12 Mg	3	- To b 4	e me 5	asure 6	ed 7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3s3p
\cap	4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3d4p
H	5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	5s4d5p
*	6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5d6p
roject	7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	7s6d7p
ngra-p	8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7d8p
ies/ta	9	165	166		- Pu	blish	ed							167	168					9s9p
/facilit																				
:ru/en			6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		4f
ph.jinr			7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		5f
			8	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		6f
L the second sec																				

8 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 5g

Research SCIENCE BRINGING NATIONS TOGETHER

Joint Institute for Nuclear

中学校 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

1 - Installation for the study of helium porosity;

5 - Installation for the study of reactions with the departure of

4 - Installation of NAA (lithium target);

6 - Installation for channeling research;

7 - Besides IBT : Chemical Laboratory; 8 - Engineering Laboratory;

2 - Ion irradiation chamber; 3 - Ion Beam Spectrometer Chamber;

charged particles;

A promising neutron source based on the EG-5 accelerator at FLNP JINR

Doroshkevich Aleksandr at el.

BULGARIAN ACADEMY of SCIENCES

E-mail: doroh@jinr.ru

Beam parameters of EG-5 accelerator

GasTarget D(d,n)3He

Neutron beam parameters

-Neutrons flow - 5 107 pat/s sm² Max. neutrons energy - 5,5±0,1 MeV (Deutron current - 2mkA, deutron energy - 2,5MeV);

Ion beam parameters

Range of ion beam currents - 0,01 - 3 MKA (100 - 250mkA*);

- Real ion beam energy range 800 keV 2,5MeV (4,1 MeV*);
- Energy resolution (H¹, He²¹) not worse than 15keV;
- Charged particles flow (H⁺, He²⁺) 10¹²-10¹³ part /s sm⁻²

Nuclear physics

Nuclear reactions with fast quasimonoenergetic neutrons, including: - research of fast neutron induced fission: measurements of the prompt fission neutron (PFN) spectra and total kinetic energies (TKE) in reactions ²³⁵U(n,f), ²³⁸U(n,f), ²³⁷Np(n,f), ²³⁹Pu(n,f) for neutron energy region of 1-5 MeV;

- the study of the multiplicity of PFNs in these fast neutron reactions in geometry with high efficiency of PFN registration;

- measurement of the spectra of charged particles from reactions (n, α), (n, p) depending on the neutron energy in the energies region up to 5 MeV and higher; - measuring the integral and differential cross sections of these reactions as a function of neutron energy;

- investigation of the spectrum and angular distributions of charged particles at a neutron energy of ~ 20 MeV in order to study non-statistical effects;

- the study of reactions (α, n) and (p, n) in combination, respectively, with reactions (n, α) and (n,p);

- investigation of elastic and inelastic scattering of fast neutrons by atomic nuclei; - Using the TOF technique in a pulsed mode (f~ 1 MHz, dt~1-10 ns).

SINN-29

2172

第29届中子与核相互作用国际研讨会

The FG-5 accelerator complex

9 10

Building 42

11

TO	View	Target	Reaction	Quantity	Energy range	Sec.E/Angle	Accuracy	Cov Field	Date
2H		8-0-16	(n,a),(n,abs)	515	2 MeV-20 HeV		See details	Y Fission	12-SEP-08
3H	14	94-PU-239	(n,f)	prompt g	Thermal-Fast	Eg=0-10HeV	7.5	Y Fission	12-MAY-06
48	1	92-U-235	(0,f)	prompt g	Thermal-Past	Eg=0-10HeV	7.5	Y Fission	12-MAY-86
811	1	1-H-2	(n,el)	DA/DE	0.1 MeV-1 MeV	0-180 Deg	5	Y Fission	16-APR-07
15H	1	95-AM-241	(n,g),(n,tot)	516	Thermal-Fast		See details	Fission	10-SEP-08
16H	E.	92-0-238	(n,in1)	516	65 keV-28 HeV	Emis spec.	See details	Y Fission	11-SEP-08
19H	12	94-PU-238	(n,f)	\$16	9 keV-6 MeV		See details	Y Fission	11-SEP-08
21H	-	95-AM-241	(n,f)	SIG	180 keV-20 HeV		See details	Y Fission	11-SEP-08
22H	2	95-AM-242M	(n,f)	\$16	0.5 keV-6 MeV		See details	Y Fission	11-SEP-08
25H	1	96-CM-244	(n.f)	\$16	65 keV-6 HeV		See details	Y Fission	12-SEP-08
27H	1	96-CM-245	(n, f)	516	0.5 keV-6 MeV		See details	Y Fission	12-5EP-08
29H	10	11-NA-23	(n,inl)	516	0.5 MeV-1.3 MeV	Emis spec.	See details	Y Fission	12-SEP-08
32H	10	94-PU-239	(n,g)	516	0.1 eV-1.35 HeV		See details	Y Fission	12-SEP-08
33H	1	94-PU-241	(n,g)	516	0.1 eV-1.35 KeV		See details	Y Fission	12-SEP-08
34H	12	26-FE-56	(n,in1)	516	0.5 MeV-20 MeV	Emis spec.	See details	Y Fission	12-SEP-08
35H	-	94-PU-241	(n,f)	\$16	0.5 eV-1.35 HeV		See details	Y Fission	12-SEP-08
378	10	94-PU-248	(n,f)	516	8.5 keV-5 NeV		See details	Y Fission	15-SEP-08
JBH	10	94-PU-248	(n,f)	nubar	200 keV-2 MeV		See details	Y Fission	15-SEP-08
39H	-	94-PU-242	(n,f)	SIG	200 keV-20 KeV		See details	Y Fission	15-SEP-08
41H	13	82-P8-205	(n,in1)	SIG	8.5 MeV-6 MeV		See details	Y Fission	15-SEP-08
4211	1	82-P8-207	(n,inl)	510	0.5 MeV-6 MeV		See details	Y Fission	15-SEP-08
45H	1	19-K-39	(n,p),(n,np)	SIG	18 NeV-28 HeV		10	Y Fusion	11-JUL-17
97H	10	24-CR-50	(n,g)	510	1 keV-100 keV		5-10	Y Fission	05-FEB-18
98H		24-CR-53	(n,g)	516	1 keV-100 keV		8-10	Y Fission	05-FEB-18
99H	1	94-PU-239	(n.f)	nubar	Thermal-5 eV		1	Y Fission	12-APR-18
102H	1	64-6D-155	(n,g),(n,tot)	516	Thermel-100 eV		4	Y Fission	09-MAY-18
103H	2	64-GD-157	(n.g).(n.tot)	\$16	Thermal-100 eV		4	Y Fission	09-HAY-18
114H	1	83-81-209	(n.g)81-210g.m	BR	500 eV-300 keV		10	Y ADS. Fission	09-NOV-18
1104	10	04.00.320	In man)	676	Thomas I. F. old			V Elector	00 400 10

Most of the required neutron energies are in the range, which can be achieved in our accelerator. These tasks are difficult and expensive to solve at other types of neutron [2] https://www.oecd-nea.org/dbdata/hprl/search.pl?vhp=on facilities

A charged particles - spectrometer

Neutron generator

Data Acquisition System

SCIENCE BRINGING NATIONS

FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

🗖 弗兰克中子物理实验室

Experimental Hall EG-5, FLNP, JINR

Unique results have

The recent results have been obtained at EG-5. FLNP, JINR, the technique has been developed at FLNP and tested at EG-5:

Cross sections of (n,a) reaction with fast neutrons

BULGARIAN ACADEMY

BULGARIAN ACADEMY of SCIENCES INVESTIGATION OF Rhenium by Neutrons

Rhenium - A METAL WITHOUT WHICH THERE WOULDN'T BE GASOLINE!

Abstract. Modern and advanced technologies require the synthesis and use of new materials with improved and well-known properties and characteristics. In recent years, due to the unique properties of rhenium (Re) as one of the other refractory elements (Ta, Mo, W, Ti, Zr, Tc), its use worldwide has increased significantly. Rhenium is used, for example, in the aerospace industry (high-temperature W- and Mo-alloys for jet and rocket engines), the chemical industry, coating and welding, electronics, photography, nuclear medicine, etc. Rhenium is among the rarest metals on Earth and it does not occur uncombined or as a compound in a mineable mineral species. However, it is spread throughout the Earth's crust to the extent of ~0.001ppm. Production of rhenium is by extraction from the flue dusts of molybdenum smelters or by phytoextraction from soils and waters. The EXFOR experimental nuclear data library for the cross sections of (n, γ) , (n, γ) n'), (n, 2n), (n, 3n), (n, p), (n, α) reactions (activation, differential, total), the energy and angular distributions of the reaction products contain not many data. Some of the included datasets significantly differ from each other, others have relatively large experimental error-bars. It is proposed to start a comprehensive study of the nuclear properties of rhenium isotopes using neutrons of various energies at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna (Russia). The experimental results obtained can be used to better understand the mechanism of neutron-induced nuclear reactions, as well as for the needs of nuclear, life and environmental sciences.

Joint Institute for Nuclear Research

Rhenium (**Re**), <u>chemical element</u>, a very rare metal of Group 7 (VIIb) of the periodic table and one of the densest elements. Predicted by Dmitry Ivanovich Russian chemist the (1869) as chemically related Mendelevev to manganese, rhenium was discovered (1925) by the German chemists Ida and Walter Noddack and Otto Carl Berg. The metal and its <u>alloys</u> have found limited application as turbine blades in <u>fighter-</u> engines, fountain pen points. highiet temperature <u>thermocouples</u> (with <u>platinum</u>), <u>cataly</u> sts, electrical contact points, and instrumentbearing points and in electrical components, such as in flashbulb filaments as an <u>alloy</u> with <u>tungsten</u>.

Rhenium does not occur free in nature or as a <u>compound</u> in any distinct <u>mineral</u>; instead it is widely distributed in small amounts in other minerals, usually in concentrations averaging about 0.001 parts per million. <u>Chile</u> is the world leader in rhenium recovery, followed by the <u>United States</u>, Poland, Uzbekistan, and Kazakhstan.

EUTRON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY

> Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

Aerospace

Chemical Processing

Medical Equipment

Metallurgy

Research And Development

Semiconductor

rapid research letters

https://sci-hub.se/https://doi.org/10.1002/pssr.201800658

REVIEW

Transition Metal Dichalcogenides

Electronic and Optoelectronic Applications Based on $\mbox{Re}S_2$

Yan Xiong, HuaWei Chen, David Wei Zhang, and Peng Zhou*

Schematic diagram of few-layer **Re**S2 based photodetector

Review @ RRL Ionotronic Neuromorphic Devices Fei Yu and Li Qiang Zhu

6

2019

WILEY-VCH

Current state of production and consumption of rhenium abroad

- Salts used in industry and research
- Salts supplied to the production of metallic rhenium
- Stocks
- Salts
- Powder, fillets, rods, wire, etc..
- Heat treated alloys
- Thermocouples
- Chemical industry

Kaerbek Argimbaev^{1,*}, Dmitry Ligotsky², and Egor Loginov³

186.207

https://doi.org/10.1051/e3sconf/202125812012

Fig. 4. Structure of consumption of rhenium products in the USA (2018).

Rhenium is used in platinum-rhenium catalysts which in turn are primarily used in making lead-free, high-octane gasoline and in high-temperature superalloys that are used to make jet engine parts. Other uses:

- * Widely used as filaments in mass spectrographs and in ion gauges.
- * An additive to tungsten and molybdenum-based alloys to increase ductility in these alloys.
- * An additive to tungsten in some x-ray sources.
- * Rhenium catalysts are very resistant to chemical poisoning, and so are used in certain kinds of hydrogenation reactions.
- * Electrical contact material due to its good wear resistance and ability to withstand arc corrosion.
- * Thermocouples containing alloys of rhenium and tungsten are used to measure temperatures up to 2200 °C.
- * Rhenium wire is used in photoflash lamps in photography.
- * For use in booster rocket engine

https://www.refractorymetal.org/overview-of-the-refractory-metal-rhenium/

https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/34/e3sconf_uesf2021_12012.pdf

Molybdenum

Rhenium Alloy Foil

Rhenium Wire

Isotope Applications:

Stable Rhenium Isotopes - Re Isotopes

Nominal Mass	Accurate Mass	% Natural Abundance	Chemical Form	Enrichment Available %
¹⁸⁵ Re	184.952951 (3)	37.40 (2)	metal	94 - 97+
¹⁸⁷ Re	186.955744 (3)	62.60 (2)	metal	95 - 99+

- is used for research in nuclear physics;
- is used for Re-186 radionuclide production (can be used in life science for healthcare and medical applications and pharmaceuticals industries);
- is used for Os-189m radionuclide production (can be used in life science for healthcare and medical applications and pharmaceuticals industries);

Re-185 and Re-187 isotopes are market available as metal foil and powder

Joint Institute for Nuclear Research

70 80

60

https://www.youtube.com/watch?v=VRccwkEmOYg&t=3s

2023

BULGARIAN ACADEMY

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

1896 - 1978

RANK LABORATORY OF EUTRON PHYSICS, JINR, RUSSIA

Ida Noddack Tacke (25 February 1896 in Wesel - 1978) was a German chemist and physicist. With her husband Walter Noddack she discovered element 75 Rhenium. She correctly criticized Enrico Fermi's chemical proofs in his 1934 neutron bombardment experiments, from which he postulated that transuranic elements might have been produced, and which was widely accepted for a few years. Her paper, "On Element 93" suggested a number of possibilities, centering around Fermi's failure to chemically eliminate all lighter than uranium elements in his proofs, rather than only down to lead. The paper is considered historically significant today not simply because she correctly pointed out the flaw in Fermi's chemical proof but because she suggested the possibility that "*it is conceivable that the nucleus breaks up into several* large fragments, which would of course be isotopes of known elements but would not be neighbors of the irradiated element." In so doing she presaged what would become known a few years later as nuclear fission. However Noddack offered no theoretical basis for this possibility, which defied the understanding at the time, and her suggestion that the nucleus breaks into several large fragments is not what occurs in nuclear fission. The paper was generally ignored. Later experiments along a similar line to Fermi's, by Irene Joliot-Curie, and Pavel Savitch in 1938 raised what they called "interpretational difficulties" when the supposed transuranics exhibited the properties of rare earths rather than those of adjacent elements. Ultimately in 1939 Otto Hahn and Fritz Strassmann, working in consultation with long term colleague Lise Meitner (who had been forced to flee Germany) provided chemical proof that the previously presumed transuranic elements were isotopes of Barium. It remained for Meitner and her nephew Otto Frisch utilizing Fritz Kalckar and Neils Bohr's liquid drop hypothesis (first proposed by George Gamow in 1935) to provide a theoretical model and mathematical proof of what they dubbed nuclear fission (Frisch also experimentally verified the fission reaction by means of a cloud chamber, confirming the massive energy release)

UTRON PHYSICS, JINR, RUSSIA

https://www.chemeurope.com/en/encyclopedia/Ida_Noddack.html

BULGARIAN ACADEMY of SCIENCES

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS https://physicstoday.scitation.org/doi/10.1063/PT.3.2817

Renium

БЪЛГАРСКА АКАДЕМИЯ на НАУКИТЕ 1869

notybileni

Ammoniu

99%

CAS NI

NH₄ReO

Pure Ammonium Perrhenate, that metallic rhenium is extracted from is obtained as a result of refining and concentration of the ore which is later baked or melted into small drops

 $2NH_4ReO_4(s) + 7H_2 =$ $2Re^\circ + 2NH_3 + 8H_2O$ $(\Delta G^\circ 298K = -37.16 \text{ kcal})$

That is why such a small drop weight a whole gram and costs whopping 15 euros

(189) Rhenium - A METAL WITHOUT WHICH THERE WOULDN'T BE GASOLINE! - YouTube

NH4ReO4 is used for the direct production of rhenium-based catalysts used in <u>petrochemical</u> <u>refining</u> and as a precursor material for pure rhenium metal powder or pellets. No primary Sources of Rhenium are at hand, but it is extracted as a by-product from Mo-concentrates, which themselves are a by-product of mining Cu-ores.

Rhenium has a melting point of 3186 °C, which is the 3rd-highest melting point among all elements after Carbon and Tungsten. Its boiling point is at top positions with 5627 °C.

The 1 gram pellet cost me USD\$15, the powder was USD\$9/gram (From onyxmet.com in 2020)

(189) Dissolving a Super Rare Metal to make Ammonium Perrhenate - YouTube

BULGARIAN ACADEMY of SCIENCES

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

10 марта 2022 года стало знаковым событием не только для НМИЦ радиологии, но и всего отечественного здравоохранения. Именно в нашей стране был разработан, изготовлен 🦗 применен в процедуре радиосинвэктомии радиофармпрепарат на основе радионуклида Рений – 188 (Re).

В стенах филиала НМИЦ радиологии в г. Обнинск - МРНЦ им А.Ф. Цыба в рамках клинических исследований прошла процедура радиосиновэктомии - радионуклидного лечения хронического синовита коленного сустава. Заболевания суставов, в том числе синовиты, являются очень распространёнными и часто принимают хроническую форму. Сложность терапии заключается в том, что иногда заболевание становится резистентным к лекарственным препаратам.

Re-188

Re-188

Реактор СМ-3 в НИИАР — наработчик изотопов для ядерной медицины

Re-188

Rei 88

NMICR.RU

POC

NMICR

У «НАЦИОНАЛЬНЕ СЛЕДОВАТЕЛЬСКИЙ ИНИОТБРСТВА ЗЕ ЭА

ОЙ ФЕДГРА

NMIC

Reactor SM-3 at NIIAR — generator of isotopes for nuclear medicine

2022

S

ТЕНЕРАТОР РЕНИЯ-188

Prediction of the correct measured activity of ¹⁸⁶Re and ¹⁸⁸Re from reactor produced natural rhenium

B. Leila Moghaddam, Saeed Setayeshi, Mohammad G. Maragheh, Reza Gholipour

Abstract. To optimize the cost effectiveness of ¹⁸⁶Re and ¹⁸⁸Re production, which have recently been used as radio pharmaceuticals for therapeutic purposes, we designed an artificial neural network (ANN) to evaluate the activity of combined ¹⁸⁶Re+ ¹⁸⁸Re. One of the production ways is the (n, γ) reaction of natural rhenium which leads to combined 186 Re + 188 Re. Using the counted activity of 186 Re + 188 Re mixtures by a well type isotope calibrator, the precise activity of ¹⁸⁶Re and ¹⁸⁸Re is obtained by the ANN. A back-propagation ANN was trained using 30 activities of mixed ¹⁸⁶Re + ¹⁸⁸Re. The performance of the ANN was tested by Early-Stopping validation method, and the ANN was optimized with respect to its architecture. The response of the ANN shows significant precision that may be used for medical application of ¹⁸⁶Re + ¹⁸⁸Re mixtures.

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS **P** 弗兰克中子物理实 FRANK LABORATORY

RON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY

AND EFFECT, NINT, CHINA

BULGARIAN ACADEMY of SCIENCES

Research SCIENCE BRINGING NATIONS

Joint Institute for Nuclear

P 弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

3 11

Rhenium resonance parameters from neutron capture and transmission measurements in the energy range 0.01 eV to 1 keV

B.E. Epping ^{a, c, *}, G. Leinweber ^a, D.P. Barry ^a, M.J. Rapp ^a, R.C. Block ^a, T.J. Donovan ^a, Y. Danon ^b, S. Landsberger ^c

https://doi.org/10.1016/j.pnucene.2017.04.015

BULGARIAN ACADEMY of SCIENCES

Abstract. Rhenium is a refractory metal with potential uses in nuclear reactor applications, particularly those at very high temperatures. Measurements have been made using natural samples. Natural rhenium consists of two isotopes: ¹⁸⁵Re (37.40%) and ¹⁸⁷Re (62.60%). The electron linear accelerator (LINAC) at the Rensselaer Polytechnic Institute (RPI) Gaerttner LINAC Center was used to explore neutron interactions with rhenium in the energy region from 0.01 eV to 1 keV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 m and 25 m with ⁶Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. The uncertainties in resonance parameters were propagated from a number of experimental quantities using a Bayesian analysis. Uncertainties were also estimated from fitting each Re sample measurement individually. The measured neutron capture resonance integral for ¹⁸⁵Re is (4 ± 1) % larger than ENDF/B-VII.1. The capture resonance integral for ¹⁸⁷Re is (3 ± 1) % larger than ENDF/B-VII.1. Other findings from these measurements include: a decrease in the thermal <u>capture cross section</u> for ¹⁸⁵Re of (2 ± 2) % from ENDF/B-VII.1; a decrease in the thermal capture cross section for 187 Re of $(3 \pm 4)\%$ from ENDF/B-VII.1; a decrease in the thermal total cross section for ¹⁸⁵Re of (2 ± 2) % from ENDF/B-VII.1; and a decrease in the thermal total cross section for 187 Re of (6 ± 5)% from ENDF/B-VII.1. Considering the uncertainties, none of the indicated changes in thermal cross sections represents a statistically significant change from ENDF/B-VII.1.

Research SCIENCE BRINGING NATIONS

Joint Institute for Nuclear

NP 弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY of SCIENCES Investigation of Rhenium by Neutrons

1860

EPJ Web of Conferences **178**, 03005 (2018) *CGS16*

The ¹⁸⁷Re/¹⁸⁷Os abundance ratio changing with the ¹⁸⁷Re half-life can be a good chronometer for the r-process. However, slow neutron-capture process (s-process) through an isomer state of ¹⁸⁶Re (T_{1/2} = 0.2 Myr) may contaminate the ¹⁸⁷Re/¹⁸⁷Os abundance ratio. It is necessary to evaluate a contribution from ^{186m}Re created from the ¹⁸⁵Re(n, γ) ^{186m}Re reaction.

Persistent Quest Research Activities 2005 (jaea.go.jp)

Neutron capture cross section of ¹⁸⁵Re leading to ground and isomer states of ¹⁸⁶Re in the keV-neutron energy region <u>https://doi.org/10.1051/epjconf/201817803005</u>

T. Katabuchi^{1,*}, K. Takebe¹, S. Umezawa¹, R. Fujioka¹, T. Saito¹, and M. Igashira¹

¹Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

Abstract. The neutron capture cross section of ¹⁸⁵Re was measured in the astrophysically important energy region. Measurements were made using a neutron beam from a ⁷Li(p,n)⁷Be neutron source with energies ranging from 3 to 90 keV. Two different experimental techniques, time-of-flight (TOF) and activation methods, were employed. In the TOF experiments, the total neutron capture cross section of ¹⁸⁵Re was determined by the pulse-height weighting technique. In the activation method, the partial capture cross section leading to the ground state of ¹⁸⁶Re was measured by detecting decay γ -rays from neutron activated samples. The present cross section values were compared with evaluated cross section data and previous measurements. The difference between the TOF and activation results was smaller than experimental uncertainties. This suggests that the production cross section of isomer states of ¹⁸⁶Re is very small.

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

ОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Production of the ^{186m}Re isomer in nuclear reactor

Koltsov, V.V. Production of the ^{186m}Re Isomer in Nuclear Reactors. Phys. Atom. Nuclei 84, 1817–1820 (2021). https://doi.org/10.1134/S1063778821090209

Vladimir Koltsov

Khlopin Radium Institute Saint-

Petersburg

E-mail: vladimir-koltsov@yandex.ru

The ^{186m}Re isomer is of interest for creating an isomeric energy source

Possible reactions for the formation of the ^{186m}Re isomer

- 1. The integral cross section for the formation of the 186m isomer Re: $\sigma_{tot} \approx 300$ mbar.
- 1. Excitation of the isomer during inelastic scattering of neutrons by ¹⁸⁶Re nuclei is not significant (low concentration of ¹⁸⁶Re).
- 2. Restriction on the integral cross section of $\sigma(n,2n) < 10$ mbar.
- 3. Therefore, the main isomer formation reaction is (n, γ) .

Formation of the 186m Re isomer in the reaction (n, 2n)

Total cross section for the 187 Re (n, 2n) reaction as a function of the neutron energy.

- 1. For the (n, 2n) reaction, neutrons with an energy of more than 8 MeV are required.
- 2. 2. Assuming the neutron fission spectrum in this energy range, it can be considered that approximately 0.5% of neutrons have energy more than 8 MeV.
- 3. Total cross section (n, 2n) of the reaction < 2000 mbar \rightarrow integral cross section less than 100 mbar.
- 4. In a similar reaction (n, 2n) on ¹⁹¹Ir, the isomer is formed with a probability of 3% of reactions.
- It can be assumed that the integral cross section for the formation of the ^{186m} Re isomer is less than 10 mb.

Образование изомера ^{186m}Re в реакции (n, 2n)

https://indico.cern.ch/event/839985/contributions/3985315/attachments/2125013/3577580/Koltsov_-_Production_of_Re_.pdf

Measurements of rhenium isotopic composition in lowabundance samples <u>https://pubs.rsc.org/en/content/articlepdf/2020/ja/c9ja00288j</u>

Mathieu Dellinger 🔟 *², Robert G. Hilton ² and Geoffrey M. Nowell 🔟 b

^a Department of Geography, Durham University, DH1 3LE Durham, UK. E-mail: <u>mathieu.dellinger@durham.ac.uk</u> ^b Department of Earth Sciences, Durham University, DH1 3LE Durham, UK

Abstract

Rhenium (Re) is a trace element whose redox chemistry makes it an ideal candidate to trace a range of geochemical processes. In particular, fractionation of its isotopes ¹⁸⁷Re (62.6% abundance) and ¹⁸⁵Re (37.4%) may be used to improve our understanding of redox reactions during weathering, both in the modern day and in geological archives. Published methods for measurement of Re isotopic composition are limited by the requirements of Re mass to reach a desirable precision, making the analysis of many geological materials unfeasible at present. Here we develop new methods which allow us to measure Re isotope ratios (reported as δ^{187} Re) with improved precision: ±0.10‰ (2 σ) for a mass of Re of ~1 ng to ±0.03‰ (2 σ) for a mass of Re of >10 ng. This is possible due to the combination of a modified column chemistry procedure and the use of 10¹³ Ω amplifiers for measurement *via* multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). For river water samples (with Re concentrations typically ~10⁻¹² g g⁻¹) we design a field-based pre-concentration of Re that can be used with large volumes of filtered water (5–20 L) shortly after sample collection to provide abundant Re for isotope analysis. As a result of these developments we provide new measurements of δ^{187} Re in standards reference materials (δ^{187} Re values range from –0.06 ± 0.07‰ to +0.19 ± 0.05‰) and a seawater standard (δ^{187} Re = +0.10 ± 0.04‰), providing impetus for further exploration of the Re isotope system.

Rhenium is traditionally obtained as a by-product of roasting and hydrometallurgical treatment of molybdenum and copper concentrate

Phytomining: New Method for Rhenium

Ognyan Bozhkov Christina Tzvetkova Institute of General

BULGARIAN ACADEMY of SCIENCES

> and Inorganic Chemistry, Bulgarian Academy of Sciences Sofia, Bulgarla

Ludmila Borisova Russian Academy of Sciences Moscow, Russia

Boris Bryskin Bryskin Metallurgical Consultino Palm Coast, Fla.

> Application of **Re phytomining** is inexpensive and environmentally friendly and it leads to remediation of exhausted soils of copper mines and ore-dressing

regions.

copper ores and concentrates,

and 20% is obtained from Recontaining wastes, such as allovs and catalysts. The world production of Re in 2008 was 45 tons, while the annual demand of Re is

henium (Re) is one of the rarest elements in the Earth's crust (7 ×10*%), and is one of the ten most expensive metals on the world market^[1]. It has unique physicochemical properties that allow its use in preparation of high-temperature superalloys; rhenium improves the physicochemical properties of Ni-Re, W-Re, Pt-Re, and other superalloys. The main application of Re is Ni-Re alloy in preparing turbine blades for aircraft engines and gas turbines. The main world producers of Re are Chile, Kazakhstan, France, Germany, Russia, U.S., China, Great Britain, the Netherlands, and Poland^[1]. The main consumers of Re world produc-

How can this rhenium tion are: Rolls Royce (28%), General Electric (28%), and Pratt & Whitney (12%) in the manbe collected profitably? ufacture of superalloys used in aerospace industry and energetics. Re-Pt alloys account for mulate and concentrate in the green parts of all

14% of Re use as catalysts for the production of kinds of vegetation can be used to this aim. The lead-free gasoline. High-temperature thermoplant biosphere is a natural collector and concouples, x-ray sources, selfcleaning electrical contacts, and other products consume

18% Re. About 80% of Re is obtained as a by-product of the

vegetation in areas of copper mines and copper processing works is enriched in rhenium in amounts many times exceeding its natural occurrence[5]. It is known that rhenium occurs in copper and molybdenum sulfide ores as the water insoluble ReS.M There are sources of

centrator of Re from the sur-

production of Re cannot meet industry needs,

there is a continual search for new Re sources

and new, more effective technologies for its

production. Current technologies for produc-

ing rhenium containing concentrates and ex-

tracting Re from them are not effective

enough. During these processes, part of the

rhenium is lost and dispersed as volatile Re₂O₂

in surrounding soils and as ReO4 ions in in-

dustrial waste solutions and water121. The scat-

tered rhenium in the environment around

copper and molybdenum mines and copper

processing factories is a potential source for

The unique property of rhenium to accu-

rhenium production.

bioavailable ReO4 ions in these areas. This is the oxidation zone of ore deposits and dissolved oxygen in underground, hydrothermal, and

Joint Institute for Nuclear

SCIENCE BRINGING NATIONS TOGETHER

Research

surface waters. Some oxidation steps of the technology for producing copper and molybdenum concentrates by bacterial leaching with acidithiobacillus ferrooxidans in H2SO4 solution in presence of Fe3+ ions also generate ReO. ions, which are dispersed in the surface environment of copper mine regions through waste waters and rain fall^[7,8]. Volatile Ro₂O₂ is generated during roasting of the concentrate, which is dispersed as a gas emission in the environment and settles on the soils, where in contact with water, it easily transforms to ReO₄ ions^[2].

Phytomining of Rhenium

Journal of Cleaner Production Volume 328, 15 December 2021, 129534

On the uptake of rhenium by plants: Accumulation and recovery from plant tissue

Christina Tzvetkova ^a 🖉 🖾 , Luís A.B. Novo ^b 🖉 🖾 , Stela Atanasova-Vladimirova ^c,

Tsvetan Vassilev ^c

Show more V

「」」 ア 弗兰克中子物理实验室

FRANK LABORATORY OF

NEUTRON PHYSICS, JINR, RUSSIA

+ Add to Mendeley 🗠 Share 🤧 Cite

https://doi.org/10.1016/j.jclepro.2021.129534 л

Get rights and content >

https://doi.org/10.1016/j.jclepro.2021.129534

This study was the first to ever employ Scanning electron (SEM) microscopy imaging analysis and Infrared (IR) spectrometry to investigate the accumulation of Re in plants.

SINN-29 第29届中子与核相互作用国际研讨会 2023

ADVANCED MATERIALS & PROCESSES • MAY 2012

Asarel open pit copper mine, Bulgaria. Phytomining rhenium is an inexpensive, environmentally friendly green technology.

pyro- and hydrometallurgical treatment of molybdenum and about 60 tons^[1]. Because world

1- dry alfalfa

- 2- finely ground dried alfalfa
- 3- ammonium perrhenate powder

Extraction and determination of Re in alkaline and aqueous extracts spectrophotometrically or using TXRF technique

Highly selective and sensitive catalytic spectrophotometric determination of ng amounts of Re

The reaction is based on the catalytic action of Re (IV) on the reduction of organic reagent DMDTO with Sn (II) in an alkaline medium, yielding a blue colored product with A max at λ =634 nm. The calibration graph is linear in the range 2-15 ng Re/ml

Rapid spot semi-quantitative test

hytomining of Rhenium

Reference scale

Quantitative Spectrophotometric determination

Thermo Evolution 160 UV-vis spectrophotometer Thermo Scientific

Total X-ray Fluorescence Spectroscopy (TXRF)

An analytical technique for determining elemental content in liquids, solids and loose powders. The main principle is that atoms, when irradiated with X-rays, radiate secondary X-rays - the fluorescence radiation. Each element is associated with a specific wavelength and energy of the fluorescence radiation. The concentration is calculated using the fluorescence intensity. TXRF analysis is based on internal standardization: an element, which is not present in the sample, must be added for quantification purposes. In this case gallium (Ga).

MDPI

Rhenium is traditionally obtained as a by-product of roasting and hydrometallurgical treatment of molybdenum and copper concentrate

microorganisms

Article

Arthrospira platensis as Bioremediator of Rhenium Mono- and Polymetallic Synthetic Effluents

Inga Zinicovscaia ^{1,2,3,*}, Liliana Cepoi ⁴, Ludmila Rudi ⁴, Tatiana Chiriac ⁴, Nikita Yushin ¹ and Dmitrii Grozdov ¹

- ¹ Department of Nuclear Physics, Joint Institute for Nuclear Research, 6 Joliob-Curie Str., Dubna 1419890, Russia
- ² Department of Nuclear Physics, Horia Hulubei National Institute for K&D in Physics and Nuclear Engineering, 30 Reactorului Str., P.O. Box MG-6, 077125 Bucharest, Romania
- ³ Laboratory of Physical and Quantum Chemistry, Institute of Chemistry, 3, Academiei Str., MD-2028 Chisinau, Moldova
- ⁴ Laboratory of Phycobiotechnology, Institute of Microbiology and Biotechnology, 1, Academiei Str., MD-2028 Chisinau, Moldova
- * Correspondence: zinikovskaia@mail.ru; Tel.: +7-4962165609

Abstract: Rhenium is a scarce and highly important metal for industry and technology. In the present study, the cyanobacterium *Arthrospira platensis* (Spirulina) was used to remove rhenium and related elements (Mo and Cu) from mono- and polymetallic synthetic effluents. Metal ions in different concentrations were added to the culture medium on the first, third, and fifth days of biomass growth, and their uptake by the biomass was traced using ICP-AES technique. The accumulation of rhenium in the biomass was dependent on the chemical composition of the effluents, and the highest uptake of 161 mg/kg was achieved in the Re-Cu system. The presence of rhenium, copper, and molybdenum affected the productivity of Spirulina biomass and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll α and β -carotene). With the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced increase in productivity and protein content was observed. The presence of copper in systems has a negative effect on biomass productivity and biochemical composition. *Arthrospira platensis* may be of interest as a bioremediator of rhenium-containing effluents of various chemical compositions.

2122

Citation: Zinicovscaia, I.; Cepoi, L.; Rudi, L.; Chiriac, T.; Yushin, N.; Grozdov, D. Arthrospira platensis as Bioremediator of Rhenium Monoand Polymetallic Synthetic Effluents. Microorganisms 2022, 10, 2109. https://doi.org/10.3390/ microorganisms10112109

子与核相互作用国际研讨会

Keywords: Arthrospira platensis; biochemical analysis; proteins; rhenium; molybdenum; copper; bioremediation

Joint Institute for Nuclear

SCIENCE BRINGING NATIONS

Research

The presence of **rhenium**, copper, and molybdenum affected the productivity of **Spirulina** biomass and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll & alpha: and & beta:carotene).

With the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced increase in productivity and protein content was observed.

The content of Re, Cu, and Mo in Spirulina samples was determined using an inductively coupled plasma-optical emission spectrometer, PlasmaQuant 9000 Elite (Analytik Jena, Jena, Germany).

强脉冲辐射环境模拟与效应 国家重点实验室 THE STATE KEY LABORATORY OF INTERSE FULSED RADBATTOR SIMULATION ADD BEFECT, NINT, CHINA

RANK LABORATORY OF

NEUTRON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY of SCIENCES

IBR-2 pulsed (epi)thermal neutron reactor https

https://ibr-2.jinr.ru/

MINISTRY OF EDUCATION AND RESEARCH INSTITUTE OF CHEMISTRY

inga zinicovscaia thesis.pdf (cnaa.md)

The title of manuscript: U.D.S. 504.45.06(043.2) +579.22:546.3(043.2)

ZINICOVSCAIA INGA

IMPACT OF SOME METALS DETERMINED BY NEUTRON ACTIVATION ANALYSIS ON THE QUALITY OF THE

ENVIRONMENT

145.01. ECOLOGICAL CHEMISTRY

Doctoral thesis in chemistry

Rhenium is a scarce and highly important metal for industry and technology.

Joint Institute for Nuclear

SCIENCE BRINGING NATIONS

Research

FLNP 弗兰克中子物理实验

NEUTRON PHYSICS, JINR, RUSSIA

BR-1 The oldest active reactor in the world

BULGARIAN ACADEMY of SCIENCES

Iv. Boyadjov, R. De Neve, J. Hoste, Determination of rhenium in molybdenites by neutron activation analysis, Analytica Chimica Acta, Volume 40, 1968, Pages 373-378, ISSN 0003-2670, <u>https://doi.org/10.1016/S0003-2670(00)86750-1</u>.

https://www.sckcen.be/en/infrastructure/br1-belgian-reactor-1

Cylindrical core: Diameter = 4.7 m, Length = 4.9 m 25 ton natural metallic U in Al cladding

In-core experiments:

 ${\sim}70$ irradiation experimental channels Maximum thermal flux $4x10^{11}$ n/cm²s Low neutron flux gradient Possibility for online instrumentation Pneumatic rabbit systems

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

Iv. Boyadjov, R. De Neve, J. Hoste,

BULGARIAN ACADEMY of SCIENCES 1869

Determination of rhenium in molybdenites by neutron activation analysis, Analytica Chimica Acta, Volume 40,

1968. Pages 373-378, ISSN 0003-2670, https://doi.org/10.1016/S0003-2670(00)86750-1.

Interest in rhenium has increased in recent years because of its use in different branches of various new technologies. As the abundance of rhenium is generally low in rocks and minerals, sensitive methods for its determination are required. Neutron activation analysis appears to be one of the most appropriate. This technique has been used to determine rhenium in materials such as enzymes¹, marine organisms², rocks³⁻⁵, ores⁶, meteorites⁷⁻⁹, tectites¹⁰, granites¹¹, electrolytic zinc sulphate solutions¹² and molybdenites¹³⁻¹⁵. In all these determinations, separation techniques such as precipitation, distillation, ion exchange and liquid-liquid extraction have been applied; most of the procedures involve rather complicated chemical separations, wit11 low chemical. yields and are time-consuming. The proposed method for the determination of rhenium in molybdenites by thermal neutron activation analysis, is based on a simple extraction with pyridine and γ - or β -counting. It applies simple operations in a very short time, thus ensuring quantitative recovery.

TABLE I

NUCLEAR	DATA OF	RHENIUM.	MOLYBDENUM	AND	TECHNETIUM
HOCKBURK.	Dury or	Antonaom,	mournound		. Boundarow

d nalysisa Gainica Atta 373 Elau-ber Publialang Company, Amsteedaan 373 Prinzed in The Networlanda	Natural isotope	Abundance (%)	Thermal cross-section (barn)	Isolope formed	Half- life	y-Energy (MeV)	β-Energy Emax (keV)
DETERMINATION OF RHENIUM IN MOLYBDENITES BY NEUTRON ACTIVATION ANALYSIS IV. DOYADJOY*, K. DE NEVE** AND J. HOSTE Institute for Nuclear Steinese, Chend University, Chend (Bicgium) (Reviewd September 13th. 1057)	140[50	37.07	104	186 [20	89 h	0.063, 0.128, 0.137, 0.631, 0.769	1072(70 %) 934(22%) 307(0.11%)
Interest in rhenium has increased in recent years because of its use in different branches of various new technologies. As the abundance of rhenium is generally low	187Re	62.93	69	188m Ro 188 Rc	19 m 17 h	0.064, 0.092, 0.106 0.063, 0.155, 0.477, 0.632	2116(80%) 1500
in rocks and minerals, sensitive methods for its determination are required. Neutron activation analysis appears to be one of the most appropriate. This technique has been used to determine themium in materials such as enzymes!, marine organisms?, rocks?*, orset, metoories?, tectites?, granites?!, detrolytic zinc subplate sol- utions? and molybelenites?>**!, It all these determinations, separation techniques with a second sec	92Mo 98Mo	15.84 23.78	0.006 0.51	^{93m} Mo ⁹⁹ Mo	6.9 h 67 h	0.684, 0.148 0.181, 0.740	1420(2%) 1278(75%)
Such as precipitation, using the procedure in order affect after complete definition of the procedure involve rather completion definition of the procedure involve rather completion definition of the determination of rhenium in molybdenites by thermal neutron activation analysis, is based on a simple extraction with pyridine and $\gamma \circ f$ -counting. It applies simple operations in a very short time, thus ensuring quantitative recovery.	100Mo	9.63	0.20	00mTc 99Tc 101Mo	6 h 2.12 • 10 ⁸ y 14.6 m	0.140 0.191, 0.510, 0.590, 1.02	310 (100%)
				101 Tc	14.0 m	0.130, 0.186, 0.307	

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

FRANK LABORATORY OF

EUTRON PHYSICS, JINR, RUSSIA

BULGARIAN ACADEMY of SCIENCES

Fig. 3.10: Periodic Table of Elements indicating which neutron activation technique is commonly applied for the determination of a certain element.

BULGARIAN ACADEMY of SCIENCES

Figure 3. Sensitivity of PGAA for the elements [9]. Shown are estimated limits for the detection of traces as given for the instrument PGAA at MLZ. These limits also depend on the matrix material.

NEUTRON PHYSICS, JINR, RUSSIA

INTENSE PULSED RADIATION SIMULATION AND EFFECT, NINT, CHINA

SCIENCE BRINGING NATIONS TOGETHER

2023

Daqian Hei

BULGARIAN ACADEMY of SCIENCES

Research progress on in situ on-line measurement technology of elemental composition of PGNAA.

PGNAA technique

Challenges

With the development of other analytical methods and instruments, such as ICP-MS, AMS and LIF. PGNAA

and NAA was greatly challenged.

1																	
	Be											B 1	c	N 500	0 500	F 1000	Ne 100
Na 1.0	Mg 100											Al 10	Si 1000	P 1000	s	Cl 1.0	Ar 0.1
К 10	Ca 1000	Sc 0.1	Ti 100	V 1.0	Cr 10	Mn 0.1	Fe 100	Co 1.0	Ni 100	Cu 10	Zn 10	Ga 1.0	Ge 100	As 0.01	Se 0.1	Br 0.1	Kr 1.0
Rb 10	Sr 100	Y 100	Zr 100	Nb 1000	Mo 10		Ru 10	Rh 100	Pd 10	Ag 1.0	Cd 10	In 0.01	Sn 10	Sb 0.1	Те 0.1	I 0.1	Xe 1.0
Cs 1.0	Ba 10	La 0.1	Hf 0.1	Та 1.0	W 0.1	Re 1.0	Os 100	Ir 0.1	Pt 10	Au 0.01	Hg 10	T	Pb	빙	Po	Ar	Rn
Fr	Ra	Ac															
			Ce 10	Pr 1.0	Nd 100	Pm	Sm 0.1	Eu 1.0	Gd 10	ть 1.0	Dу 0.1	Ho 1.0	Er 10	Tm 1	Yb 0.1	Lu 0.01	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	α	Es	Mit	Fm	No	в	

Analysis Method	Detection Limit
PGNAA	1E-6
ICP-MS	1E-12
NAA	1E-14
AMS	1E-16
SXRF	1E-17
LIMS	1E-18
LIF	1E-22

8 ORDERS to Laser Introduced Fluorescen

Fast Neutron Activation Analysis Prompt Gamma Activation Analysis Thermal Neutron Activation Analysis Not done by NAA "Numbers represent ppm

Analytical capabilities and detection limits for elements by NAA and PGNAA.

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

P弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

2018

Progress of Neutron Reaction Data Measurement at CIAE

Xichao Ruan

China Nuclear Data Center, Key Laboratory of Nuclear Data China Institute of Atomic Energy (CIAE)

http://isinn.jinr.ru/past-isinns/isinn-26/0529PM/T8.pdf

The 26th International Seminar on Interactions of Neutrons with Nuclei May $28^{\rm th}-$ June $1^{\rm st}$, 2018, Xian, China

600 kV Cockcroft-Walton neutron generator

•Provide 14 and 2.5 MeV neutrons for ND measurement, detector calibration and other applications

• Provide 6.13 MeV gammas for detector calibration

•> 1000 hours beam time every year for different users

lons	p and d						
Current	Maximum 1 mA (DC) ~30 μA (pulsed)						
Pulse width	~2 ns						
Neutron yield	10 ¹¹ n/s for DC 14 MeV 10 ⁹ n/s for pulsed						
	109 n/s for DC2.5 MeV108 n/s for pulsed						

6 Clover and 6 HPGe detectors
Mainly used for (n, 2nγ) and (n, n'γ) measurement

35

2123

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

Eur. Phys. J. A (2016) 52: 148 DOI 10.1140/epja/i2016-16148-4

The neutron cross-section functions for the reactions $^{187}\text{Re}(n, \alpha)^{184}\text{Ta}$, $^{187}\text{Re}(n, 2n)^{186}\text{Re}$ and $^{185}\text{Re}(n, 2n)^{184}\text{Re}$ **THE EUROPEAN** in the energy range 13.08–19.5 MeV

PHYSICAL JOURNAL A

PHYSICAL JOURNAL A

THE EUROPEAN

2016

2021

2022

2019

2123

BULGARIAN ACADEMY of SCIENCES 1869

> N. Jovančević^{1,2}, L. Daraban¹, H. Stroh¹, S. Oberstedt^{1,a}, M. Hult¹, C. Bonaldi¹, W. Geerts¹, F.-J. Hambsch¹, G. Lutter¹, G. Marissens¹, and M. Vidali¹

Eur. Phys. J. A (2019) 55: 27 DOI 10.1140/epja/i2019-12698-1 2019

Indian Journal of Pure & Applied Physics Vol. 58, April 2020, pp. 314-318, 2020https://inspirehep.net/files/e8257ce0 1d5b9c125482be7617ad93c9

> Chinese Physics C, 2021, 45 (7): 074101. https://doi.org/10.1088/1674-1137/abf5ca

Chinese Physics C, 2022, 46(5): 054003.https://doi.org/10.1088/1 674-1137/ac4ca0

International Journal of Atomic and Nuclear Physics 4/1, DOI: 10.35840/2631-5017/2512

NN-29

Activation cross-sections for the 185 Re(n, 2n) reaction and the isomeric cross-section ratio of ^{184m,g}Re in the neutron energy range of 13–15 MeV Junhua Luo^{1,2,a} and Li Jiang³

Namrata Singh, A Gandhi, Aman Sharma, Mahesh Choudhary & A Kumar Excitation functions of (n,p) and (n,2n) reactions of tantalum, rhenium, and iridium in the neutron energy range up to 20 MeV

Fenggun Zhou (周丰群), Yueli Song (宋月丽), Xinyi Chang (畅心怡) et al. Cross section measurements for (n,2n), (n,α) , and (n,p) reactions on rhenium isotopes around 14 MeV neutrons and their theoretical calculations of excitation functions

Yong Li (李勇), Fenggun Zhou (周丰群), Yajuan Hao (郝亚娟) et al. New cross section measurements on tungsten isotopes around 14 MeV neutrons and their excitation functions

Chinese Physics C

Tsugio Yokoyama and Masaki Ozawa, Production of Low Activity Rhenium by Transmuting Tungsten Metal in Fast Reactors with Moderator

Research

UTRON PHYSICS, JINR, RUSSIA

Regular Article The neutron cross-section functions for the reactions ${}^{187}\text{Re}(n,\alpha){}^{184}\text{Ta}, {}^{187}\text{Re}(n,2n){}^{186}\text{Re and } {}^{185}\text{Re}(n,2n){}^{184}\text{Re}$ in the energy range 13.08–19.5 MeV

N. Jovančević^{1,2}, L. Daraban¹, H. Stroh¹, S. Oberstedt^{1,a}, M. Hult¹, C. Bonaldi¹, W. Geerts¹, F.-J. Hambsch¹, G. Lutter¹, G. Marissens¹, and M. Vidali¹

Abstract. In the present work, measurements of the cross-section functions for the ${}^{187}\text{Re}(n,\alpha){}^{184}\text{Ta}$, ${}^{187}\text{Re}(n,2n){}^{186}\text{Re}$ and ${}^{185}\text{Re}(n,2n){}^{184}\text{Re}$ reactions were performed in the energy range 13.08–19.5 MeV. We applied the neutron activation technique using several wide-energy neutron beams (NAXSUN), recently developed at the JRC-IRMM. This method involves measuring the activity of the radionuclides produced in a target by the in energy overlapping neutron beams and a subsequent unfolding procedure. The present results are the first experimental data on these cross-sections for incident neutron energies between 15 and 19.5 MeV and may contribute to improving evaluations and nuclear models.

Fig. 1. (a) Schematic drawing of the sample setup for activation (not to scale). (b) Schematic drawing of the neutron fluence rate monitoring setup during an activation run (not to scale). **Table 2.** Neutron irradiation data. E_i : ion energy (with uncertainty), E_n : neutron energy at 0° relative to the incident ion beam (with uncertainty) and t: irradiation time (with uncertainty).

Disk No.	E_i (MeV)	$E_{\rm n}~({\rm MeV})$	t (s)
1	3.300(11)	19.78(20)	86921(10)
2	2.500(11)	18.71(20)	248402(10)
3	2.000(11)	18.10(28)	157632(10)
4	2.000(11)	18.10(28)	166564(10)
5	1.500(11)	17.16(30)	231958(10)
6	1.000(11)	15.97(82)	243608(10)
7	0.800(11)	15.26(131)	144831(10)

Eur. Phys. J. A (2016) **52**: 148 DOI 10.1140/epja/i2016-16148-4 The neutron cross-section functions for the reactions $^{187}\text{Re}(n,\alpha)^{184}\text{Ta}$, $^{187}\text{Re}(n,2n)^{186}\text{Re}$ and $^{185}\text{Re}(n,2n)^{184}\text{Re}$ in the energy range 13.08–19.5 MeV

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Fig. 16. Comparison of the obtained results in this work with ENDF and EXFOR data for the ${}^{187}\text{Re}(n,\alpha){}^{184}\text{Ta}$ reaction [28, 31,38,39].

Eur. Phys. J. A (2016) **52**: 148 DOI 10.1140/epja/i2016-16148-4 The neutron cross-section functions for the reactions $^{187}\text{Re}(n,\alpha)^{184}\text{Ta}$, $^{187}\text{Re}(n,2n)^{186}\text{Re}$ and $^{185}\text{Re}(n,2n)^{184}\text{Re}$ in the energy range 13.08–19.5 MeV

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Fig. 14. Comparison of the obtained results in this work with ENDF and EXFOR data for the 187 Re(n, 2n) 186 Re reaction [26–30].

Eur. Phys. J. A (2016) **52**: 148 DOI 10.1140/epja/i2016-16148-4 The neutron cross-section functions for the reactions $^{187}Re(n,\alpha)^{184}Ta$, $^{187}Re(n,2n)^{186}Re$ and $^{185}Re(n,2n)^{184}Re$ in the energy range 13.08–19.5 MeV

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Fig. 15. Comparison of the obtained results in this work with ENDF and EXFOR data for the 185 Re(n, 2n) 184 Re reaction [28, 30–37].

Eur. Phys. J. A (2019) **55**: 27 DOI 10.1140/epja/i2019-12698-1

Junhua Luo^{1,2,a} and Li Jiang³

Institute of New Energy, Hexi University, Zhangye 734000, China
 School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China
 Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900, China

THE EUROPEAN PHYSICAL JOURNAL A

Activation cross-sections for the $^{185}\rm{Re}(n,2n)$ reaction and the isomeric cross-section ratio of $^{184m,g}\rm{Re}$ in the neutron energy range of 13–15 MeV

Fig. 1. Metastable and ground states in the 185 Re $(n, 2n)^{184m,g}$ Re reactions [2]. All energies are in keV. Transition from both the excited and ground state is represented by the bold black line, with the intensity in brackets indicating rays originating from both states.

https://rdcu.be/cPi1X

https://doi.org/10.1140/epja/i2019-12698-1

Eur. Phys. J. A (2019) **55**: 27 DOI 10.1140/epja/i2019-12698-1

Activation cross-sections for the ${}^{185}Re(n, 2n)$ reaction and the isomeric cross-section ratio of ${}^{184m,g}Re$ in the neutron energy range of 13–15 MeV Junhua Luo & Li Jiang

THE EUROPEAN PHYSICAL JOURNAL A

Table 2. Measured nuclear reactions on rhenium and decay data (taken from [2]). The boldface font is used in the calculation.

Reaction	Abundance of target isotope	Half-life of product	$E ext{-threshold}$	Mode of decay	$E\gamma$	$I\gamma$							
	(%)		(MeV)	(%)	(keV)	(%)							
$^{185}{ m Re}(n,2n)^{184m}{ m Re}$	37.402	169 d ₈	7.900	IT(74.50)	104.739	13.6_{4}							
10 ⁶	201/ 226.7 keV 384.3 keV 641.9 ke	aV 894.8 keV 903.3 keV		EC(25.50)	111.217	5.8_{4}							
10 ⁵ 104.7 10 ⁴ 11	10 ⁵ 111.2 keV / 318.0 keV / 536.7 keV 792.0 keV 920.9 keV												
10 ³ 10 ² 161.31	226.748	1.49_{6}											
	ctivation spectrum of Re @ cooling time: 246	days, acquisition time: about 30	1100 1200		252.845	10.8_{4}							
	252.8 keV 641.9 keV 792	2.0 keV 894.8 keV 903.3 ke	v 100 1200		318.008	5.81_{20}							
O 10 ³ S 10 ² 111.2 k	eV				384.250	3.1711							
O 10 ¹	(b) Activation spectrum of Re @ cooling t acquisition time: about 16 hours	time: 25.5 hours,			536.674	3.34 ₁₂							
10^4 (c) E	ackground spectrum	700 800 900 1000	1100 1200		641.915	0.344_{16}							
10 ²					792.067	3.69_{14}							
10 ¹ - 10 ¹		ويسترجع والبراجي أترارك والتقاسم والمتالية والمراب			894.760	2.7613							
100	200 300 400 500 600	700 800 900 1000	1100 1200		903.282	3.74_{14}							
	y-ray energy	gy (kev)			920.933	8.2 ₃							
$^{185}{ m Re}(n,2n)^{184g}{ m Re}$	37.402	$35.4 d_7$	7.711	EC(100)	111.217	17.27							
Fig. 3. (a)	γ -ray spectrum of rheni	um obtained afte	r 246 davs		252.845	3.0 ₃							
of cooling f	from the end of irradiation	on; acquisition ti	me: about		641.915	1.95_{6}							
30 hours. ((b) γ -ray spectrum of rh	nenium obtained	after 25.5		792.067	37.711							
hours of co	oling from the end of in	radiation, acquisi	tion time:		894.760	15.7_{5}							
about 10 h	burs; (c) background sp	ectrum.			903.282	38.112							
93 Nb(n, 2n) 92m Nb	100	$10.15 d_2$	8.972	EC(100)	934.44	99.15_{4}							

Fig. 4. Excitation functions of the 185 Re $(n, 2n)^{184m}$ Re reaction for measured and literature data.

Fig. 5. Excitation function of the 185 Re $(n, 2n)^{184g}$ Re reaction for measured and literature data.

Eur. Phys. J. A (2019) **55**: 27 DOI 10.1140/epja/i2019-12698-1 Activation cross-sections for the ¹⁸⁵Re(n, 2n) reaction and the isomeric cross-section ratio of ^{184m,g}Re in the neutron energy range of 13–15 MeV Junhua Luo & Li Jiang PHYSICAL JOURNAL A

Fig. 6. Excitation function of the 185 Re $(n, 2n)^{184m+g}$ Re reaction. <u>https://doi.org/10.1140/epja/i2019-12698-1</u>

Eur. Phys. J. A (2019) **55**: 27 DOI 10.1140/epja/i2019-12698-1 Activation cross-sections for the ¹⁸⁵Re(n, 2n) reaction and the isomeric cross-section ratio of ^{184m,g}Re in the neutron energy range of 13–15 MeV Junhua Luo & Li Jiang PHYSICAL JOURNAL A

Fig. 7. Cross-section ratio of the ${}^{185}\text{Re}(n, 2n){}^{184m}\text{Re}$ and ${}^{185}\text{Re}(n, 2n){}^{184g}\text{Re}$ reactions as a function of the neutron energy.

Indian Journal of Pure & Applied Physics Vol. 58, April 2020, pp. 314-318

Excitation functions of (n,p) and (n,2n) reactions of tantalum, rhenium, and iridium in the neutron energy range up to 20 MeV

Namrata Singh, A Gandhi, Aman Sharma, Mahesh Choudhary & A Kumar*

Department of Physics, Banaras Hindu University, Varanasi 221 005, India

Received 17 February 2020

The excitation functions for (n,p) and (n,2n) reactions up to 20 MeV on Tantalum, Rhenium, and Iridium have been calculated using the TALYS-1.9 nuclear reaction model code. Different level density models have been used to get a good agreement between the calculated and measured data. In the present work, we have carried out the TALYS-1.9 calculations

to quantitatively understand the experimental data by optimizing input 1 2,5 185 Re(n,p) 185 mW, 185 Re(n,2n) 184 Re, 191 Ir(n,p) 191 Os and 191 Ir(n,2n) 190 Ir. The experimental data (taken from the EXFOR database) up to 20 MeV. \neq 2,0 ENDF/B-VIII.0 and TENDL-2015 evaluated data.

https://inspirehep.net/files/e8257ce01d5b9c 125482be7617ad93c9

*Corresponding author (E-mail: ajaytyagi@bhu.ac.in)

Cross section measurements for $(n, 2n), (n, \alpha)$, and (n, p) reactions on rhenium isotopes around 14 MeV neutrons and their theoretical calculations of excitation functions^{*}

Fengqun Zhou(周丰群)^{1,2†} Yueli Song(宋月丽)¹ Xinyi Chang(畅心怡)¹ Yong Li(李勇)¹ Shuqing Yuan(袁书卿)¹ Pengfei Ji(姬鹏飞)¹ Mingli Tian(田明丽)¹

¹School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China ²Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan 467000, China

Abstract: Cross-section data of the ¹⁸⁵Re(n,2n)^{184m}Re, ¹⁸⁵Re(n,2n)^{184g}Re, ¹⁸⁵Re(n,α)^{182m1+m2+g}Ta, ¹⁸⁷Re(n,2n)^{186g,(m)}Re, ¹⁸⁷Re(n,α)^{184T}Ra, and ¹⁸⁷Re(n,p)¹⁸⁷W reactions were measured at four neutron energies, namely 13.5, 14.1, 14.4, and 14.8 MeV, by means of the activation technique, relative to the reference cross-section values of the ⁹³Nb(n,2n)^{92m}Nb reaction. The neutrons were generated from the T(d,n)⁴He reaction at the K-400 Neutron Generator at China Academy of Engineering Physics. The induced γ activities were measured using a high-resolution γ -ray spectrometer equipped with a coaxial high-purity germanium detector. The excitation functions of the six abovementioned nuclear reactions at neutron energies from the threshold to 20 MeV were calculated by adopting the nuclear theoretical model program system Talys-1.9 with the relevant parameters properly adjusted. The measured cross sections were analyzed and compared with previous experiments conducted by other researchers, and with the evaluated data of BROND-3.1, ENDF/B-VIII.0, JEFF-3.3, and the theoretical values based on Talys-1.9. The new measured results agree with those of previous experiments and the theoretical excitation curve at the corresponding energies. The theoretical excitation curves based on Talys-1.9 generally match most of experimental data well.

Keywords: cross sections of (n,2n), (n,α) and (n,p) reactions, rhenium isotopes, activation technique, off-line γ -ray spectrometry, theoretical calculations

DOI: 10.1088/1674-1137/abf5ca

Chinese Physics C Vol. 45, No. 7 (2021) 074101

Fig. 1. (color online) Part of the γ -ray spectrum of rhenium obtained after 6.78 h of cooling following the end of irradiation; the measurement duration was approximately 3.82 h.

Fig. 2. (color online) Part of the γ -ray spectrum of rhenium obtained after 125.45 h of cooling following the end of irradiation; the measurement duration was approximately 20.78 h.

Table 1. Reactions and associated decay data of activation products

Reaction	Abundance (%)	Activation products	<i>T</i> _{1/2}	E_{γ}/keV	$I_{\gamma}(\%)$
185 Re(<i>n</i> ,2 <i>n</i>)	37.40	^{184m} Re	169 d	920.93	8.2
185 Re(<i>n</i> ,2 <i>n</i>)	37.40	^{184g} Re	35.4 d	792.07	37.7
				1010.24	0.092
¹⁸⁵ Re(n,α)	37.40	^{182m1+m2+g} Ta	114.74 d	1189.04	16.49
187 Re(<i>n</i> ,2 <i>n</i>)	62.60	^{186g} Re	3.7183 d	630.33	0.0294
187 Re(n, α)	62.60	¹⁸⁴ Ta	8.7 h	414.01	72
187 Re (<i>n</i> , <i>p</i>)	62.60	^{187}W	24.0 h	685.81	33.2
93 Nb(<i>n</i> ,2 <i>n</i>)	100	^{92m} Nb	10.15 d	934.44	99.15

Chinese Physics C Vol. 45, No. 7 (2021) 074101

In general, our experimental cross-section values are consistent, within experimental error, with those of previous experiments and theoretical excitation curves at the corresponding energies.

Comparison with these evaluation curves shows that the theoretical excitation curves based on Talys-1.9 code agree well with the experimental results.

The new measured results in the present study would improve the quality of the neutron cross section database and are expected to assist with new evaluations of cross sections on rhenium isotopes in the incident neutron energy range from the threshold to 20 MeV.

In addition, the theoretical excitation curves are relevant for the design of fusion reactors and related applications.

Sahan, H., Sahan, M. & Tel, E. Cross-Section Calculation of (n,p) and (n,2n) Reactions for High Temperature Reactors Construction Materials Tungsten and Rhenium. Phys. Atom. Nuclei 84, 724–738 (2021). https://doi.org/10.1134/S1063778821050124.

荆州大字

u ğılı)

BULGARIAN ACADEMY

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

BULGARIAN ACADEMY of SCIENCES Thank you for your attention

The project "TANGRA" (TAgged Neutrons and Gamma RAys) is devoted to study of neutron-nuclear interactions, using the tagged neutron method (TNM). The essence of TNM is to register the characteristic nuclear gamma-radiation, resulting from the interaction of neutrons from the binary d(t, 4He)n reaction with the nuclei of the substances under study, in coincidence with the accompanying alpha-particles detected by the position-sensitive alpha detector located inside the neutron generator vacuum chamber.

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS TOGETHER

P 弗兰克中子物理实验室 FRANK LABORATORY OF NEUTRON PHYSICS, JINR, RUSSIA

