29th International Seminar on Interaction of Neutrons with Nuclei (29 May – 2 June 2023)

Neutronic Chain Reactions in Bismuth Salts

Solomon Lim

National University of Singapore High School of Mathematics and Science

Polonium-210: A Nuclear Oddity

≻Properties:

- Specific activity of 4490 curies per gram
- Pure alpha-emitter
- Alpha emission energy of 5.41 MeV
- Highly radiotoxic ($LD_{50} = 0.89\mu g$)
- "Sublimes" in air due to intense alpha activity

Polonium-210: A Nuclear Oddity

Multi-Foil > Applications: Insulation **General Purpose Heat Source Aluminum Outer** Beryllium Pins Shell Assembly SiGe Unicouple Nickel/Gold Polonium Nuclear weapons Radiotherapy Energy generation Introduction Significance Methods Results Conclusions

Producing Po-210

➤Purification from uranium ore

• Led to its discovery by M. Curie

Introduction

Significance

Methods

Results

Producing Po-210

Po-210 as an alpha source

- Mixed with light elements, e.g. Be, Li, F to produce neutrons
- Neutron output depends on (α, n) cross section of light element

α-Particles Neutrons

Connecting the Dots: Chain Reaction Mechanism

Significance

- Provides a cost-effective and rapid method of producing large quantifies of polonium-210
- Reduces dependence on reactors with high neutron flux for producing polonium-210

Introduction

Significance

Methods

Results

Initiation of chain reaction

 Achieved via neutron irradiation of bismuth salt
 Compared to normal polonium accumulation curve

Introduction

Selection of bismuth salt

- Criteria for bismuth salt to be able to sustain the chain reaction:
 - High Bi density to increase polonium production rate
 - Neutron multiplication to sustain neutron population
 - Neutron moderation for bismuth neutron capture
 - High (α, n) reaction yield

Bismuth salt chosen: Bismuth beryllium acetate

Introduction	Significance	Methods	Results	Conclusions

Selection of element for (a,n) reaction

 (α,n) Yield (5.41 MeV)

Vlaskin, G. N., Khomyakov, Y. S., & Bulanenko, V. I. (2015). Neutron Yield of the Reaction (α, n) on Thick Targets Comprised of Light Elements. *Atomic Energy*, *117*(5), 357–365. https://doi.org/10.1007/s10512-015-9933-5

Neutron capture cross section of ²⁰⁹Bi

Incident neutron data // Bi209 / /

12

Neutron multiplication

Neutron moderation

Why acetate?

- Relatively high hydrogen density by mass
- Bismuth beryllium hydroxide was considered due to its higher hydrogen density, but was found to quickly decompose to bismuth beryllate

Introduction	Significance	Methods	Results	Conclusions

Neutron Source Construction

Waheed, A., Ali, N., Baloch, M. A., Qureshi, A. A., Munem, E. A., Rajput, M. A., Jamal, T., & Muhammad, W. (2017). Optimization of moderator assembly for neutron flux measurement: experimental and theoretical approaches. *Nuclear Science and Techniques*, 28(5). https://doi.org/10.1007/s41365-017-0213-z

Irradiation Assembly

Significance

- Mast source used as central source and plate sources used as peripheral sources
- Beryllium reflectors used to increase neutron flux

Introduction

Salt preparation

Cocrystallisation of bismuth and beryllium acetate from hot peroxyacetic acid solution

Reduces exposure to beryllium dust

Alpha spectroscopy

Alpha spectroscopy was used to identify ²¹⁰Po (characteristic alpha peak at 5.30 MeV)

$$R[\text{cm}] = \frac{0.543E[\text{MeV}] - 0.160}{\rho \left[\frac{\text{g}}{\text{cm}^3}\right]}$$

Significance

Results

Introduction

Methods

Conclusions

Beta spectroscopy

Beta spectroscopy was used to identify ²¹⁰Bi (maximum beta energy of 1.16 MeV)

$$-\frac{dE}{dx} = \frac{4\pi e^4 z^2}{m_0 v^2} NB$$

Significance

Methods

Introduction

Results

Range of β - particles in paraffin wax

Conclusions

Mathematical modelling

Significance

Methods

$$N_2 = N_{1(0)} \cdot \frac{\alpha e^{\kappa t}}{1 + \alpha e^{\kappa t}}$$

$$\alpha = \frac{\phi \sigma \rho A}{M \varepsilon}$$

$$\kappa = \frac{\lambda_1 n}{\lambda_2}$$

Introduction

N₂ is the number of ²¹⁰Po atoms at time *t*N₁₍₀₎ is the number of ²⁰⁹Bi atoms present initially
φ is the neutron flux of the initial neutron source
σ is the neutron capture cross section of ²⁰⁹Bi
ρ is the density of ²⁰⁹Bi
A is Avogadro's number
M is the molar mass of ²⁰⁹Bi
ε is the neutron multiplication factor
λ₁ is the decay constant of ²¹⁰Po
n is the neutron conversion coefficient

Results

Conclusions

21

Source characterisation (alpha)

Source characterisation (neutron)

AmBe neutron source spectrum

Chain reaction propagation

Rate of polonium growth

Comparison with normal reaction

Alpha spectrum (²¹⁰Po)

Po-210 alpha spectrum

Beta spectrum (²¹⁰Bi)

Bi-210 beta spectrum

Conclusions

- Novel chain reaction has been proposed and characterised in bismuth beryllium acetate
- Formation of polonium in larger quantities achievable through normal methods has been confirmed

Introduction	Significance	Methods	Results	Conclusions

Future Work

References

- 1. Ádám, A., Hraskó, P., Pálla, G., & Quittner, P. (1963). The mechanism of the (n, 2n) reaction. Nuclear Physics. https://doi.org/10.1016/0029-5582(63)90112-3
- 2. Barbagallo, D., Bolduc, B., Hassett, B., Johnson, W. W., Koumba, K., Leeming, A., Mach, P., McCormack, J., McDonough, M. M., & Nyamwanda, J. (2020). Neutron Attenuation in Polyethylene Using an AmBe Source. *Journal of Undergraduate Reports in Physics*, *30*(1), 100001. https://doi.org/10.1063/10.0002041
- 3. Becker, H., & Bothe, W. (1932). Die in Bor und Beryllium erregten ?-Strahlen. The European Physical Journal A, 76(7–8), 421–438. https://doi.org/10.1007/bf01336726
- 4. Bjerge, T. (1938). The Production of Neutrons by Bombardment of Beryllium with Alpha-Particles. *Proceedings of the Royal Society of London. Series a, Mathematical and Physical Sciences*, 164(917), 243–256. https://doi.org/10.1098/rspa.1938.0016
- 5. IAEA Publications. (n.d.). https://www-pub.iaea.org/mtcd/publications/
- 6. Lea, D. E. (1935). Secondary gamma rays excited by the passage of neutrons through matter. *Proceedings of the Royal Society of London*, 150(871), 637–668. https://doi.org/10.1098/rspa.1935.0127
- 7. Littler, D. J., & Lockett, E. (1953). The Pile Neutron Absorption Cross Sections of Bismuth. *Proceedings of the Physical Society*, 66(8), 700–704. https://doi.org/10.1088/0370-1298/66/8/303
- 8. Radiation Protection (Ionising Radiation) Regulations 2023 Singapore Statutes Online. (2023, February 20). https://sso.agc.gov.sg/SL/RPA2007-S85-2023?DocDate=20230217
- 9. Reed, B. C. (2019). Rousing the dragon: Polonium production for neutron generators in the Manhattan Project. American Journal of Physics. https://doi.org/10.1119/1.5094138
- 10. Richmond, J. L. (1954). Neutron, alpha, and special sources from polonium. https://doi.org/10.2172/934663
- 11. Vlaskin, G. N., Khomyakov, Y. S., & Bulanenko, V. I. (2015). Neutron Yield of the Reaction (α, n) on Thick Targets Comprised of Light Elements. *Atomic Energy*, *117*(5), 357–365. https://doi.org/10.1007/s10512-015-9933-5
- 12. Waheed, A., Ali, N., Baloch, M. A., Qureshi, A. A., Munem, E. A., Rajput, M. A., Jamal, T., & Muhammad, W. (2017). Optimization of moderator assembly for neutron flux measurement: experimental and theoretical approaches. *Nuclear Science and Techniques*, *28*(5). https://doi.org/10.1007/s41365-017-0213-z

Introduction	Significance	Methods	Results	Conclusions

