

ISINN-29

Application of the yeast *Saccharomyces cerevisiae* for the removal of heavy metals from industrial wastewater

Yushin N., Zinicovscaia I.

Relevance of the work

Traditional industrial wastewater treatment methods

- Mechanical Settling, filtration
- Chemical methods Complexation, precipitation
- Physical and chemical methods Coagulation, extraction, sorption, distillation
- Biochemical methods Aeration tanks, filtration fields, biofilters, biological ponds

Limitations

- High cost
- Difficulty in operation
- Exposure to toxic substances

Saccharomyces cerevisiae

Batch experiments

Ni (10 mg/L)
Ni (10 mg /L)-Cr (5 mg/L)-Fe (5 mg /L)
Ni (10 mg /L)-Sr (5 mg /L)-Cu (1 mg /L)-Zn (2 mg /L)
Ni (10 mg /L)-Zn (2 mg /L)-Mo (0.5 mg /L)-Cu (5 mg /L)

Energies used to determine the elements by NAA

Element	Isotope	Energy of γ-line, keV					
Ni	⁵⁸ Co	810.57					
Cr	⁵¹ Cr	320					
Fe	⁵⁹ Fe	1099.25					
Sr	⁸⁵ Sr	514					
Mo	⁹⁹ Mo	140.5					
Zn	⁶⁵ Zn	1115.54					

GFAAS — iCE 3400 Thermo Scientific HRICP-MS — Element 2 Thermo Scientific

Batch experiments

OH, CH=CH, C=O and HN = O groups participated in metal binding

Removal of metal ions at different initial pH

FTIR-spectra of *S. cerevisiae* biomass

Kinetics of sorption

Kinetics of the metal adsorption using *S. cerevisiae* in Ni(II)—Sr(II)—Zn(II)—Cu(II).

The constants and determination coefficients (R2) of the kinetic models

		ı	Model											
		No.	PFO			PSO			EM			IPM		
	Metal	q _{exp} , mg/g	q _e , mg/g	k ₁ , min ⁻	R ²	q _e , mg/g	k ₂ , g/mg· min	R²	α, mg/g· min	β, g/min	R ²	k _{diff}	C _i	R ²
Ni(II)	Ni	0.52	0.51	0.89	0.98	0.51	2.3	0.98	n.a.	n.a.	n.a.	0.03	0.3	0.21
Ni(II)-	Ni	0.52	0.51	0.64	0.99	0.51	6.4	0.99	n.a.	n.a.	n.a.	0.03	0.3	0.34
Cr(VI)-	Cr	0.22	0.22	0.05	0.93	0.26	0.28	0.97	0.05	20.4	0.99	0.03	0.03	0.91
Fe(III)	Fe	ľ	0.07	29.2	0.36	0.07	3.7	0.37	0.2	90.7	0.46	0.008	0.02	0.5
Ni(II)-	Ni	0.5	0.48	0.45	0.98	0.49	2.8	0.98	n.a.	n.a.	n.a.	0.03	0.2	0.38
Zn(II)-	Zn	0.22	0.23	0.4	0.96	0.22	4.2	0.96	216	72	0.97	0.02	0.09	0.48
Sr(II)-	Sr	0.22	0.22	45.4	0.97	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.02	0.1	0.19
Cu(II)	Cu	0.01	0.01	0.15	0.96	0.01	1.5	0.98	n.a.	n.a.	n.a.	0.001	0.003	0.7

Isotherm studies

The adsorption isotherms

The constants and correlation coefficients, R² of the adsorption isotherms

Model	Parameters	System								
	1	Ni(II)	Ni(II)-Cr(VI)- Fe(III)	Ni(II)-Zn(II)-Sr(II)- Cu(II)	Ni(II)-Zn(II)- Cu(II)-Mo(VI)					
	q _{m,} mg/g	8.9	8.3	11.9	7.3					
Langmiur	b, L/mg	0.008	0.01	0.007	0.01					
	R ²	0.99	0.99	0.99	0.99					
	K _F , mg/g	0.15	0.2	0.15	0.16					
Freundlich	1/n	0.71	0.67	0.77	0.67					
	R ²	0.988	0.98	0.99	0.99					
	а _т , L/g	0.12	0.13	0.12	0.13					
Temkin	B, J/mol	13.5	13	11.2	15					
	R ²	0.98	0.98	0.97	0.98					

Wastewater treatment

Efficiency of removal of metal ions from wastewater at different pH

Chemical composition of the effluent

Element	Sr	Мо	Cr	Ni	Cu	Zn	Fe	рН
Concentration, mg/l	0.31	0.002	0.005	143.1	0.03	0.5	0.69	7.0

Efficiency of removal of Ni ions from wastewater at different sorbent dosage

Conclusions

- The process of metal removal showed to be pH dependent, maximum Ni(II) removal from synthetic and real effluent was achieved at pH 6.0.
- The OH, CH=CH, C=O and HN = O groups were mainly involved in metal ion binding.
- Biosorption equilibrium data fit well the Langmuir and Freundlich models
- Kinetic studies reveal that nickel biosorption by *Saccharomyces cerevisiae* could be described more favourably by the pseudo-first and pseudo-second-order kinetic models.
- Application of two-stage process with 30 g/L of biomass on the first stage and 10 g/L of biomass on the second stage allowed to remove up to 82% of Ni(II) ions from industrial effluent.
- Saccharomyces cerevisiae can be considered as cheap and efficient sorbent for complex effluents treatment and especially Ni(II) ion removal.

