Low Temperature Study of the Complex Magnetic Order in Yb_{0.9}Sr_{0.1}MnO₃ Using Neutron Diffraction

I.A. Abdel-Latif^{1*}, A.I. Kurbakov², Sh.I. Hussein¹, Mahrous Ahmed³

¹Reactor Physics Dept., NRC, Atomic Energy Authority, Abou Zabaal P.O. 13759, Cairo, Egypt

²Petersburg Nuclear Physics Institute, Orlova Grove, Gatchina, Leningrad District, 188300, Russia

³Physics Dept., Faculty of Science, Sohag University, Sohag, Egypt

*E-mail: ihab_abdellatif@yahoo.co.uk

The present study devoted to investigation of the complex mixed crystal structure of multiferroic materials Yb_{0.9}Sr_{0.1}MnO₃. The effect of nano crystalline size on its physical properties was studied. X-ray diffraction, Raman scattering and neutron diffraction of Yb_{0.9}Sr_{0.1}MnO₃ confirmed possessing of mixed phases (orthorhombic/hexagonal phase) with space group *Pnma* (62) for orthorhombic phase while a space group *P6₃cm* (185) for hexagonal phase. The orthorhombic phase decreases with heat treatment of Yb_{0.9}Sr_{0.1}MnO₃ from 28 to 1%. Neutron diffraction measurements were carried from 2.6K up to room temperature and antiferromagnetic ordering of Yb_{0.9}Sr_{0.1}MnO₃ is appeared near *T_N* near 87K which is attributed to c-type anti-ferromagnetic ordering and Γ 2 anti-ferromagnetic ordering. Theoretical model is presented and it is based on the Monte Carlo simulation of the magnetization as a function of crystal and the temperature. Moreover, the internal energy was calculated based on Ising model. Theoretical calculations confirmed the experimental results.

Key words: Neutron; Diffraction; Manganite; Hexagonal; Orthorhombic; Magnetic; Ising model