D. Berikov^{1,6}, G. Ahmadov^{1,4,5*}, M. Holik^{2,3}, Yu. Kopatch¹, F. Ahmadov^{4,5}, S. Nuruyev^{1,5}, A. Sadigov^{4,5}, A. Madadzada^{1,4}

¹Joint Institute for Nuclear Research, IIO, Dubna ²Faculty of Electrical Engineering, UWB in Pilsen, Czech Republic ³Institute of Experimental and Applied Physics, CTU, Prague, Czech Republic ⁴Innovation and Digital Development Agency Nuclear Research Department, Baku, Azerbaijan

⁵Institute of Radiation Problems under Ministry of Science and Education, Baku, Azerbaijan ⁶The Institute of Nuclear Physics, Almaty, Kazakhstan

This work presents the results of experiment on quaternary fission (QF) in spontaneous fission of ²⁵²Cf. QF can arise from two primary pathways: "pseudo" QF via the decay of unstable species within ternary particles (LCPs, e.g., ⁷Li*, ⁸Be*, ⁹Be*) and "true" QF through the independent emission of two LCPs [1, 2]. Previous studies faced limitations in acquiring high statistics and pricisely measuring angular correlations between particles from decaying LCPs (e.g., ⁷Li*(α , t) and ⁸Be*(α , α)) [1, 2, 3]. This work overcomes these challenges by employing a particle telescope comprising 15 µm and 150 µm Δ E detectors and a 600 µm Timepix detector. This setup enables efficient identification of (α , α) and (α , t) decay pairs from excited LCPs. The detection system geometry was restricted and covered an angular range between 0°–50° and 130°–180° for the mutual opening angles (θ) between two measured LCPs. The geometry of detection system had to be simulated in order to make correction on obtained experimental results.

The observed angular distribution of α -particles from (α , α) coincidences aligns well with calculations simulating the decay kinematics of ⁸Be from its ground and first excited states. Despite limited statistics, the energy spectrum of (α , t) pairs from the second excited state of ⁷Li, detected on a single detector, was analyzed and compared to data from ternary Li particles. Additionally, results involving (α , α) and (α , t) pairs detected in opposite detectors are presented. Particle yields and energies were determined per 10⁴ ternary alphas and reported.

- Ahmadov, G.S. Detection of ternary and quaternary fission fragments from ²⁵²Cf with a position-sensitive ΔE-E telescope based on silicon detectors / G.S. Ahmadov, Yu.N. Kopatch, S.A. Telezhnikov [et al.] // Phys. Part. and Nuclei Lett., 2015, vol. 12, p. 542–549.
- Jesinger, P. New experimental studies on the quaternary fission of ^{233,235}U(n_{th}, f) and ²⁵²Cf(sf) / P. Jesinger, Yu.N. Kopatch, M. Mutterer [et al.] // Eur. Phys. J A, -2005, vol. 24, -p. 379–388.
- 3. Tishchenko, V.G. Study of ternary and quaternary spontaneous fission of ²⁵²Cf with the NESSI detector // Report HMI-B 588, 2002.