Measurements of the 6 Li(n, α) 3 H Reaction in the Neutron Energy Range E_n =3.3-5.1 MeV

<u>Chuprakov I.^{1,5}</u>, Gledenov Yu.M.¹, Sansarbayar E.^{1,3}, Krupa L.², G. Khuukhenkhuu³, Zhang Guohui⁴, Liu Jie⁴, Xia Cong⁴, Bai Haofan⁴, Wu Zepeng⁴, Ren Wenkai⁴

¹Frank Laboratory of Neutron Physics, JINR, IIO, 141980, Dubna
²Flerov Laboratory of Nuclear Reactions, JINR, IIO, 141980, Dubna
³Nuclear Research Centre, National University of Mongolia, Ulaanbaatar 210646, Mongolia
⁴State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics,
Peking University, Beijing 100871, China
⁵The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty
050032, Kazakhstan

We have measured the cross sections of the $^6\text{Li}(n,\alpha)^3\text{H}$ reaction at E_n =3.3, 3,9, 4.3,4.5, 4.8, and 5.1 MeV. Experiments were performed at the Van de Graaff Accelerator EG5 of Frank Laboratory Neutron Physics, JINR. Fast monoenergetic neutrons were obtained from the reaction $D(d,n)^3\text{He}$ using a gaseous deuterium target. The gridded ionization chamber was used as an alpha particle detector. The absolute neutron flux was determined in the $^{238}\text{U}(n,f)$ reaction, the neutron flux was monitored using both a long ^3He counter and an additional fission chamber placed inside the ionization chamber. The data we obtained were compared with those available in EXFOR and data libraries.