Investigation of Spectroscopic Properties of 108 Ag via the 107 Ag(n,2 γ) Reaction

Nikola Jovančević¹, Tamara Milanović², Dimitrije Maletić³

¹Department of Physics, Faculty of Science, University of Novi Sad, Serbia
²Vinča Institute of Nuclear Sciences, Serbia
³Institute of Physics Belgrde, Serbia

In low-energy nuclear physics, the precise determination of gamma transitions, level scheme, nuclear level density, and radiative strength function holds paramount importance. These accurate experimental values play a crucial role in various scientific domains, including astrophysical reactions, medical isotope production, rare isotope beams, and reactor technology. The two-step gamma cascade method, involving the detection of gamma-gamma coincidences after thermal (cold) neutron capture (i.e., the $(n_{th}, 2\gamma)$ reaction), has demonstrated effectiveness in providing spectroscopic data and insights into level density and radiative strength functions.

This study focuses on the investigation of the spectroscopic properties of the 108 Ag nucleus, utilizing an enriched (99.07%) 107 Ag target. The experimentation took place at the PGAA station of the Budapest Neutron Centre in Budapest, Hungary, employing a cold neutron beam, 3 HPGe detectors with appropriate shielding, and an acquisition system for coincidence measurements. This presentation offers a concise overview of the methodology employed, highlighting the spectroscopic results for the 108 Ag nucleus obtained through the 107 Ag(n_{th} ,2 γ) reaction, with a specific emphasis on gamma transitions and the level scheme.

References

- 1. David Knezevic et al, *Study of gamma transitions and level scheme of* ⁹⁴*Nb using the* ⁹³*Nb (n_{th}, 2γ) reaction*, Nuclear Physics A, volume 993, 121645, January 2020, https://doi.org/10.1016/j.nuclphysa.2019.121645
- 2. David Knezevic et al, *Study of gamma ray transitions and level scheme of* 56 *Mn using the* 55 *Mn* (n_{th} , 2γ) reaction, Nuclear Physics A, volume 992, 121628, December 2019, https://doi.org/10.1016/j.nuclphysa.2019.121628
- 3. N. Jovančević et al, *Study of Nuclear Structure Parameters by Using the* $(n_{th}, 2\gamma)$ *Reaction*, Journal of the Korean Physical Society, volume 75(2), July 2019, pages 100-116, DOI: 10.3938/jkps.75.100.