Observation of Fission Isomers among Fragments of Spontaneous and Induced Fission of Heavy Nuclei

D.V. Kamanin¹, Yu.V. Pyatkov^{2,1}, A.N. Solodov¹, V.E. Zhuchko¹, Z.I. Goryainova¹, O.V. Strekalovsky¹, E.A. Kuznetsova¹, A.O. Zhukova¹

¹Joint Institute for Nuclear Research, IIO, 141980 Dubna ²National Nuclear Research University "MEPHI", 115409 Moscow, Russia

In three different experimental approaches, it was consistently found that part of the fission fragments from the reactions ${}^{235, 238}U(\gamma, f)$, ${}^{232}Th(\gamma, f)$, ${}^{235}U(n_{th}, f)$ and ${}^{252}Cf(sf)$ are presumably born in the state of the fission isomer (with yield $Y \approx 10^{-3}$ /binary fiss.) with lifetime $\tau_{isom} > 400$ nsec. A binary break-up of such fragments was observed when passing through foils made of Ti, Cu, Ni, Al₂O₃ due to inelastic Coulomb scattering on the foil nuclei. At least one of the three resultant products of the splitting of the mother nucleus in this channel is a magic or near-magic nucleus. The effect was observed for the first time.

References

- 1. D.V. Kamanin et al., Bulletin of the Russian Academy of Sciences: Physics, V. 87 (2023), p. 1238.
- 2. D.V. Kamanin et al., Journal of Physics: Conference Series, V. 2586 (2023) 012043.