Prompt Fission Neutron Spectra of ²⁴⁰Pu(*n*,*F*)

V.M. Maslov

Slobodskoy proezd 4, 220025 Minsk, Byelorussia e-mail: mvm2386@yandex.ru

Pre-fission neutron spectra influence the partitioning of fission energy between excitation energy and total kinetic energy of fission fragments. For incident neutron energies up to $E_n \sim 20$ MeV prompt fission neutron spectra (PFNS) of ²⁴⁰Pu(n,F) are predicted as described in [1]. Simultaneous analysis of measured data for $^{238}U(n,F)$ and $^{240}Pu(n,F)$ allows extract sensitivities of PFNS shape near (n, xnf) reaction thresholds to the exclusive pre-fission neutron spectra. Those for 238 U(*n*,*F*) PFNS [1] are strongly supported by the data of [2,3]. The disclosed data [3] on average energies $\langle E \rangle$ of ²⁴⁰Pu(*n*,*F*) PFNS support the approach pursued in [1], though the lowering of <E> in [3] is inconsistent with predicted contribution of 240 Pu(*n*,2*nf*) to the observed PFNS and fission cross section. In case of 238 U(*n*,*F*) the various influence of ${}^{238}\underline{U}(n,nf)^1$ excusive neutron spectra on PFNS at $E_n \sim 7$ MeV and $E_n \sim 7-8$ MeV is demonstrated, while it is predicted for the ²⁴⁰Pu(*n*,*F*) and ²⁴⁰Pu(*n*,*nf*)¹ (Fig. 1). The largest amplitude of excusive neutron spectra at $E_n \sim 6-6.25$ MeV is envisaged. For the reactions 238 U(*n*,*F*) and 240 Pu(*n*,*F*) shape of PFNS strongly depends on the fissility of composite and residual nuclides (Figs. 1 and 2). The ²⁴⁰Pu(n,F) shape is rather close to that of ²³⁹Pu(n,F), though the contribution of pre-fission neutrons is a bit higher, as predicted in [1]. Exclusive neutron spectra $(n, xnf)^{1,..x}$ are consistent with fission cross sections of $^{237-240}$ Pu(n, F), as well as neutron emissive spectra of 239 Pu(n,xn) at ~14 MeV. Initial model parameters for 240 Pu(n,F) PFNS, fixed by description of PFNS of 240 Pu(sf) are consistent with 240 Pu(n,F) PFNS at $E_n \sim 1-2$ MeV. We predict the ²⁴⁰Pu(*n*,*xnf*)^{1,..x} exclusive pre-fission neutron spectra, exclusive neutron spectra of 240 Pu(*n*,*xn*)^{1,..x} reactions, total kinetic energy TKE of fission fragments and products, partials of average prompt fission neutron number and observed PFNS of 240 Pu(*n*,*F*). PFNS of 240 Pu(*n*,*F*) are harder than those of 238 U(*n*,*F*), but softer than those of 239 Pu(*n*,*F*).

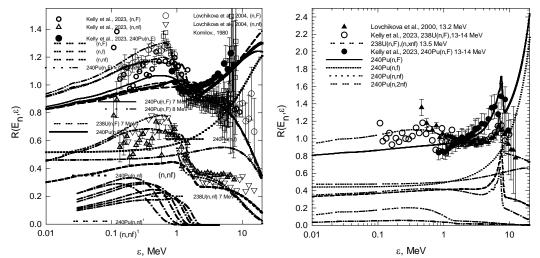


Fig.1. ²³⁸U(*n*,*F*) and ²⁴⁰Pu(*n*,*F*) PFNS, $E_n \sim 7-8$ MeV. Fig.2.²³⁸U(*n*,*F*) and ²⁴⁰Pu(*n*,*F*) PFNS, $E_n \sim 13-14$ MeV. 1. V.M. Maslov, Physics of Particles and Nuclei Letters, 2023, vol.20, No. 4, pp. 565–576.

- 2. K.J. Kelly, M. Devlin, J.M. O'Donnel et al., Phys. Rev. C, 108, 024603 (2023).
- 3. K.J. Kelly et al., https://indico.bnl.gov/event/18701/contributions/82692/(2023).