^{242m}Am Isomer Yield in ²⁴³Am(n,2n) Reaction

V.M. Maslov

Slobodskov proezd 4, 220025 Minsk, Byelorussia e-mail: mvm2386@yandex.ru

The reaction ²⁴³Am(n,2n) populates either the $T_{1/2}=16h$ ground state ^{242g}Am with $J^{\pi}=1^{-1}$ or the ^{242m}Am isomer state $J^{\pi}=5^{-1}$ with $T_{1/2}=141y$. The former state ^{242g}Am mostly β^{-1} decays to 242 Cm [1] or goes to 242 Pu via electron capture. The yield of the 243 Am(n,2n) 242g Am($\beta^{-}(\epsilon)^{242}$ Cm(242 Pu) influences the α -activity and neutron activity of the spent fuel due to emerging nuclides 242 Cm and 238 Pu. The yield of the 242m Am long-lived isomer state, which due to large and odd value of $J^{\pi}=5^{-}$ may decay to ^{242g}Am via isomeric transition only, gives a path for the ^{244}Cm yield via $^{242m}Am(n,\gamma)^{243}Am(n,\gamma)^{244m}Am(\beta^{-}(\epsilon))^{244}Cm(^{244}Pu)$ or $^{242m}Am(n,\gamma)^{243}Am(n,\gamma)^{244g}Am(\beta^{-})^{244}Cm$. If not the forbidden β^{-} -decay of ^{242m}Am state, the major path for the ^{244}Cm accumulation would not exist. A number of discrepancies are observed in Fig. 1 and Fig. 2. Calculated yields of ^{242g}Am and isomer ^{242m}Am states of the residual ²⁴²Am nuclide

are applied to predict the branching ratio $R(E_n) = \sigma_{n2n}^m(E_n)/(\sigma_{n2n}^g(E_n) + \sigma_{n2n}^m(E_n))$ (Figs. 1, 2). The branching ratio defined by the ratio of the populations of the lowest states. These populations defined by the γ -decay of the excited states, described by the standard kinetic equation. The absolute yield of ^{242g}Am is compatible with the measured data [1]. The ordering of the low and high spin states is different in case of ²³⁶Np and ²⁴²Am, that explains different shapes of $R(E_n)$ near the (n,2n) reaction threshold, though the excitation energy dependences are similar.

Fig.1. Relative yield of long-lived $(5^{-})^{242m}$ Am state fig.2 Cross sections of 243 Am(n,2n), in 243 Am(n,2n) reaction. Fig.2 Cross sections of 243 Am(n,2n), 243 Am $(n,2n)^{242m}$ Am and 243 Am $(n,2n)^{242g}$ Am.

20

1. T.L. Norris, A.J. Gancarz, D.W. Efurd, R.E. Perrin, G.W. Knobeloch, P.W. Oliver, G.F. Grisham, R.J. Prestwood, I., Binder, G.W. Butler, W.R. Daniels, and D.W. Barr. 14-MeV (n,2n) Neutron Cross Sections of ²⁴¹Am and ²⁴³Am. In: Irradiations at the Rotating Target Neutron Source-II, p. 69. UCID-19837-83.