OBSERVATION OF FISSION ISOMERS AMONG FRAGMENTS OF SPONTANEOUS AND INDUCED FISSION OF HEAVY NUCLEI

D.V. Kamanin¹, Yu.V. Pyatkov^{2,1},

A.N. Solodov¹, V.E. Zhuchko¹, Z.I. Goryainova¹, O.V. Strekalovsky¹, E.A. Kuznetsova¹, A.O. Zhukova¹

¹Joint Institute for Nuclear Research, 141980 Dubna, Russia ²National Nuclear Research University "MEPHI", 115409 Moscow, Russia

I. Introduction. What is known about the shape-isomers?
II. Delayed break-up of fission fragments in the solid-state foils as a detector of the shape-isomers
III. Collinear cluster tri-partition and shape-isomers
IV Conclusions

International support

Our congratulations

and special thanks to the organizers: for tracking progress of this study from ISINN to ISINN

ISINN-10 - first neutron-gated data with FOBOS

ISINN-13 – proposal for the exp @ IBR-2			
ISINN-14 – status of the exp in the cave 6b		miniFOBOS	
ISINN-15 – preliminary results			@IBR-2
ISINN-16 – detailed report			
ISINN-17 – triple correlations from ²³² Th+d			
ISINN-18 – COMETA progress report (posters)			COMETA
ISINN-19 – first & interesting COMETA data			²⁵² Cf
ISINN-20 – first CCT physics & Ion Guide proposal			
ISINN-21 – first indications of shape isomers in FF			
ISINN-22 – new results on shape isomers in wide range			SIS strong
ISINN-23 – first "flash"-data			indication
ISINN-25 – understanding the results and feeding theoretical discussion			
ISINN-26	True quaternary fission		
ISINN-27	Shane isomer study progress		Photo-
ISINN-28	Physics models		fission
ISINN-29	VEGA first steps		studies

An inspiration for the study of Collinear Cluster Tripartition

44 W. J. Świątecki

Fig. 3. Niels Bohr

Fig. 4. Bohr's notes, 7^{th} October 1950, his 65^{th} birthday.

...what if the strong electric repulsion would stretch out the post-saddle shape into a sufficiently long cylinder that would actually prefer to divide into three rather than two pieces? This would not be unexpected, because for Uranium the energy released in a division into three equal fragments is actually greater than into two.

SYMMETRICAL SHAPES OF EQUILIBRIUM FOR A LIQUID DROP MODEL

V.M. STRUTINSKY, N.Ya. LYASHCHENKO and N.A. POPOV

Nucl. Phys. 46 (1963) 639

SHELL STRUCTURE FOR DEFORMED NUCLEAR SHAPES

R. K. SHELINE *, I. RAGNARSSON and S.G. NILSSON Department of Mathematical Physics, Lund Institute of Technology, Lund, Sweden

When one of these additional minima is sufficiently

deep, then the nucleus may exist in a state corresponding to the energy and shape of this minimum; this state is a shape isomer. The lifetime of the shape isomer will depend on the overlap between the nuclear wavefunctions of the shape isomer and the ground state, the excitation energy of the shape isomer, and the height of the saddle separating the shape isomer and the ground state.

Thus, the existence of numerous shape isomer states even in the same isotope are predicted in the wide range of nuclei from very light one as ³²S up to super-heavy.

Global Calculation of Nuclear Shape Isomers

Peter Möller,^{1,*} Arnold J. Sierk,¹ Ragnar Bengtsson,² Hiroyuki Sagawa,³ and Takatoshi Ichikawa^{4,†}

Nuclear shape isomers

P. Möller^{a,*}, A.J. Sierk^a, R. Bengtsson^b, H. Sagawa^c, T. Ichikawa^d ^a Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States ^b Department of Mathematical Sciences, University of Alan, Alan-Walamatsun, Fukushima 965-80, Japan ^c Integrated Sciences, University of Alan, Alan-Walamatsun, Fukushima 965-80, Japan ^c Valuawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

We calculate potential-energy surfaces as functions of spheroidal (ϵ_2), <u>hexadecapole</u> (ϵ_4), and axial asymmetry (γ) shape coordinates for 7206 nuclei from A = 31 to A = 290. We tabulate the deformations and energies of all minima deeper than 0.2 MeV and of the saddles between all pairs of minima. The tabulation is terminated at N = 160.... We also present potential-energy contour plots versus ϵ_2 and γ for 1224 even–even nuclei in the region studied. We can identify nuclei for which a necessary condition for shape isomers occurs, namely multiple minima in the calculated potential-energy surface.

Next stage in studies of shape isomers : fission isomers

Shape Isomeric States in Super-Heavy Nuclei

Three-humped barrier calculated along the fission path of 296 $_{\rm 116}{\rm Lv}$ (Livermorium).

"These intermediate minima correspond to the <u>shape isomer states</u>. From analysis of the driving potential we may definitely conclude that these <u>isomeric states</u> are nothing else but <u>the two-cluster configurations with</u> <u>magic or semi-magic cores</u> surrounded with a certain amount of shared nucleons."

V. ZAGREBAEV, W. GREINER

Proc. Int. Symp. on Atomic Cluster Collisions (ISACC07), GSI Darmstadt, 2007, (Imperial College Press, London, 2008), Eds. J.-P. Connerade and A. V. Solov'yov, p. 23 Are there fission isomers in the mass range of fission fragments?

Our experimental approach: measurement of each fragment mass independently

Peculiarities of E and TOF in PIN-diods

Inspection of the base-line fluctuations as a parameter for the events selection

Our know-how: true time reference point

Digital image of the pulse **0.2ns/ch**

- Mosaics of PIN and MCP
- Event by event processing of correlated masses
- Mass of each fragment from V&E
- Using of thick materials
- Pile-up and base line controlled

Strong indication of the shape-isomer state in FF

160

A "double-core system" revealed with a magic constituent

VEGA (V-E Guide based Array) at the electron beam of the MT-25 microtron in FLNR

VEGA (V-E Guide based Array) at the electron beam of the MT-25 microtron in FLNR

Modelling of the trajectories for fission fragments Capturing angle is ~1°

VEGA (V-E Guide based Array) at the electron beam of the MT-25 microtron in FLNR

M₁(u)

Long lived history: CCT \rightarrow fission isomers. The same physics.

VEGA-m project drawings. Planning low background measurements.

Converter and target in local shielding

A way to the "low-background" lab

Conclusions & way forward @2025

In the framework of the different experimental approaches, the induced fission (break-up) of a certain part of fission fragments through the shape-isomer states was discovered.
 The life time of at least some of such states exceeds 400 ns.
 The shape-isomer state in fission fragment manifests itself via delayed break-up of the fragment in a solid-state foil.

Our publications

http://fobos.jinr.ru/

Photo-fission @ MT-25 ²³⁹Pu target expected

Study of angular correlations at COMETA-F with ²⁵²Cf

COMETA-R experiment at IBR-2 with a new thin chamber

