



# Classification of mortars from the St. George Cathedral of the Yuryev Monastery (Veliky Novgorod, Russia) based on neutron activation analysis data at the IREN facility (JINR, Russia) and the WWR-K reactor (INP, Kazakhstan)

V.V. Lobachev, A.Yu. Dmitriev, O.S. Philippova, S.G. Lennik

The 30<sup>th</sup> International Seminar on Interaction of Neutrons with Nuclei (ISINN-30), 14-18 April 2024. Sharm El Sheikh - Egypt







- Introduction and objectives
- Neutron Activation Analysis (NAA)
- Statistical methods for classification
- Conclusions



### St. George Cathedral of the Yuryev Monastery



- The cultural heritage site of global (UNESCO) and federal significance;
- 2. It was built in the first half of the XII century;
- One of the few significant cultural sites that survived after the Mongol invasion;
- 4. It was serious reconstructed in the 1830s.





# Typical samples of mortars FRANK LABORATORY OF NEUTRON PHYSICS



Л



## Sample features



| Number | Source                                                                                      | Approximate dating |
|--------|---------------------------------------------------------------------------------------------|--------------------|
| 1      | South-western crypt, foundation plaster                                                     | 19th century       |
| 2      | South-western crypt, mortar with crushed bricks from the floor                              | 12th century       |
| 3      | South-western crypt, mortar with crushed bricks from the wall                               | 12th century       |
| 4      | South-western crypt, mortar with crushed bricks from the crevice                            | 12th century       |
| 5      | Plaster and mortar for laying relics on the eastern side of the throne of the northern apse | 19th century       |
| 6      | Addition of Photios on the northern ribbon foundation                                       | 19th century       |
| 7      | North wall of the central apse, mortar with crushed bricks                                  | 12th century       |
| 8      | Pigment for coloring. North arch from below                                                 | undefined          |
| 9      | Chapel above the tower                                                                      | 12th century       |
| 10     | Excavation XI. Mortar from rubble masonry                                                   | undefined          |
| 11     | Excavation XI. Mortar from Photios' construction                                            | 19th century       |



**Research Objective** 



# Classification of mortars with unknown date based on the elemental composition







- Introduction and objectives
- Neutron Activation Analysis (NAA)
- Statistical methods for classification
- Conclusions



#### Sequence of neutron



#### activation analysis





**Radiation exposure** 

#### parameters



IREN facility for short-lived isotopes:

Neutron flux:

- thermal: 1.6 \* 10<sup>8</sup> n / cm<sup>2</sup>s;
- resonance: 2.6 \* 10<sup>7</sup> n / cm<sup>2</sup>s.

Weight of samples:

3 grams

Irradiation time:

• 40 minutes

5

Number of irradiated samples:

WWR-K reactor "Dry" channel for

short-lived isotopes:

Neutron flux:

- thermal: 4.4 \* 10<sup>12</sup> n / cm<sup>2</sup>s;
- resonance: 3.8 \* 10<sup>10</sup> n / cm<sup>2</sup>s.
  Weight of samples:
- 0.1 grams
  <u>Irradiation time:</u>
- 1 minute

11

•

Number of irradiated samples:

WWR-K reactor "Wet" channel for

long-lived isotopes:

Neutron flux:

- thermal: 6.6 \* 10<sup>13</sup> n / cm<sup>2</sup>s;
- resonance: 3.0 \* 10<sup>12</sup> n / cm<sup>2</sup>s.

Weight of samples:

• 0.1 grams

Irradiation time:

• 90 minutes

Number of irradiated samples:

11

•



#### **Relative NAA method**



NIST Standards used for irradiation at the IREN facility:

1633C, 1635A, 2586, 2710A



NIST Standards used for irradiation at the WWR-K reactor:

1566b, 1632e, 1633c, 2556, 2706, 2586, 2709a



#### Mass fractions of elements

#### in samples





JOINT INSTITUTE

FOR NUCLEAR RESEARCH











**ベルドインコンコルのののないないできたないないののものないない、** 





*୰*ଋୖଽ*୰୰*ଽୣ୵ୠୠୡୢୡୢୢୢୢୢୢୢୢୢୢୢୡୄୄୄଽଽ୵ଽୢୖ୶ୄ<sub>୴</sub>ୄୖ</mark>ୄଌ୰ୄୄୄ୰ୄୄୄୄୄୄୄୄୄୄୄୄୄୠୄୄଌୄଌୄଌୢୄୢୄଌଽୢଽ୵

11







- Introduction and objectives
- Neutron Activation Analysis (NAA)
- Statistical methods for classification
- Conclusions





# classification

Methods for sample

- Principal component analysis;
- Hierarchical cluster analysis;
- Linear discriminant analysis.





#### Cluster Dendrogram of all elements





distances hclust (\*, "ward.D2")



#### Linear Discriminant Analysis of basic oxides











- Introduction and objectives
- Neutron Activation Analysis (NAA)
- Statistical methods for classification
- Conclusions







- A total of 11 samples of mortars were irradiated;
- Mass fractions of 35 elements were obtained;
- Classification was carried out using three statistical methods;
- A hypothesis are put forward about the date of certain samples.





# Thank you for your attention!