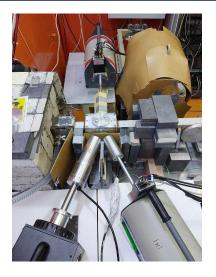
Investigation of Spectroscopic Properties of 108 Ag via the 107 Ag(n,2 γ) Reaction

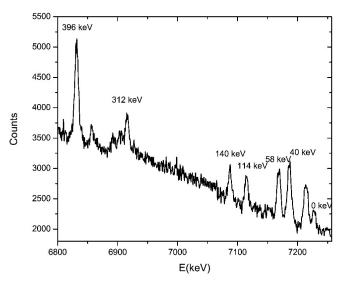
Nikola Jovančević¹, Tamara Milanović², Dimitrije Maletić³

¹Department of Physics, Faculty of Science, University of Novi Sad, Serbia ²Vinča Institute of Nuclear Sciences, Serbia ³Institute of Physics Belgrde, Serbia

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847594 (ARIEL).

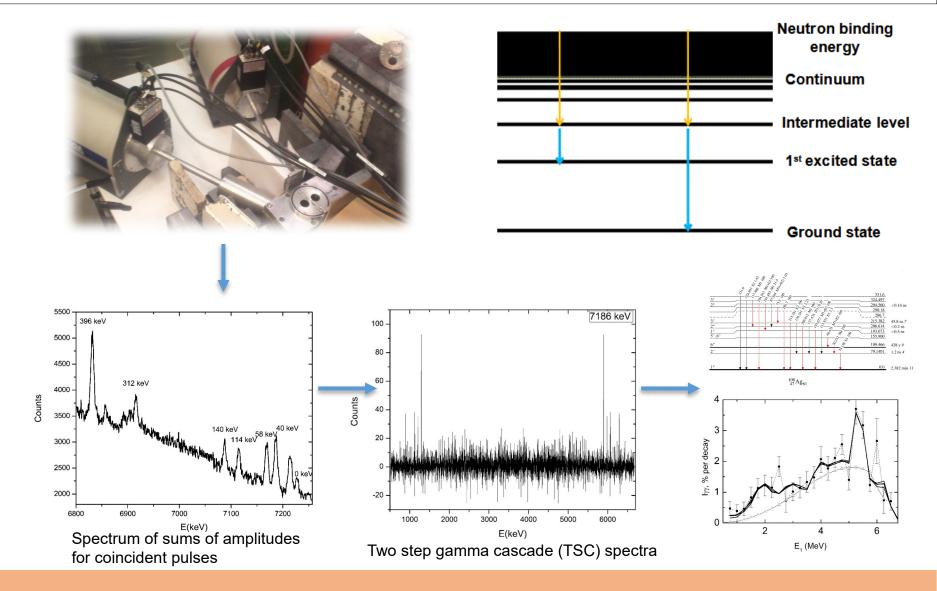
Introduction


Obtaining accurate experimental values of the level scheme, level density and radiative strength functions is necessary for fission, astrophysical studies etc.


It is necessary to develop the method for determination of these parameters.

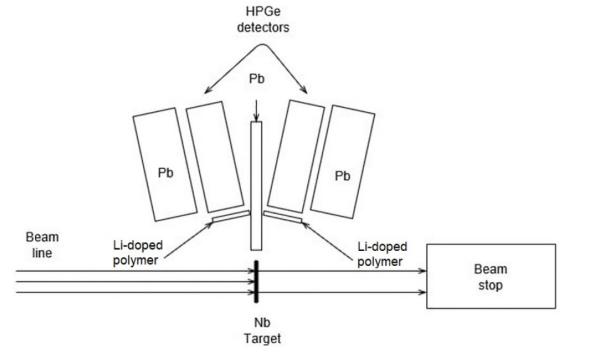
Main problem : FWHM $>> D_i$.

1. Two-step gamma cascades method.


2. Practical model of the cascade gamma-decay.

Two-step gamma cascades: Basic principles

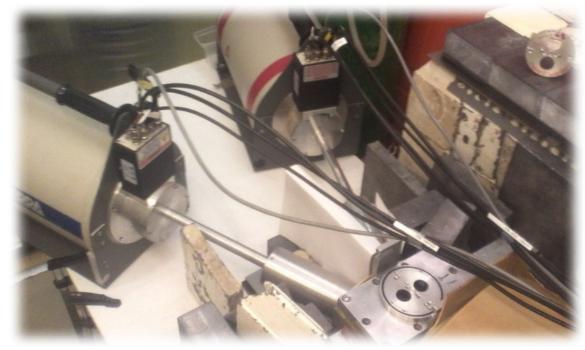
Detecting two consecutive gamma rays emitted from the binding energy to the ground state or one of the low-lying excited levels after neutron capture: $(n, 2\gamma)$ reaction.



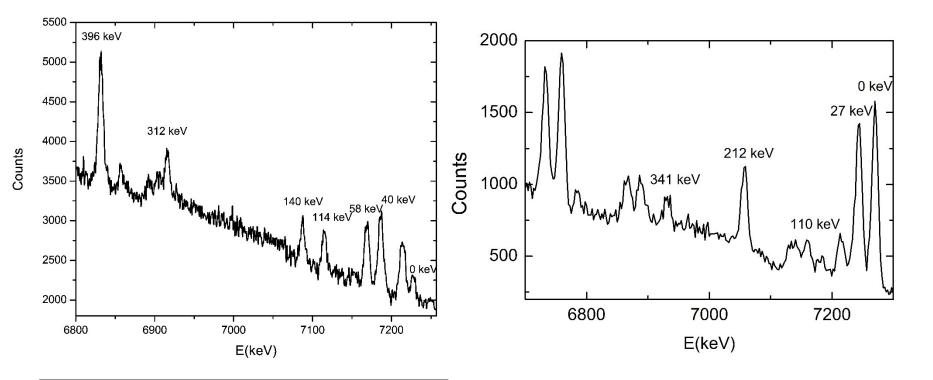
Measurement

Thermal (cold) neutron capture $(n_{th}, 2\gamma)$ reaction.

Experimental setup is fairly simple: thermal neutron beam, two HPGe detectors, target and an acquisition system capable of recording channel and time stamps of the event.



Measurement



⁹⁴Nb, ¹⁰⁴Rh and ¹⁰⁸Ag: PGAA facility of Centre for Energy Research (MTA EK), Budapest, Hungary (down).

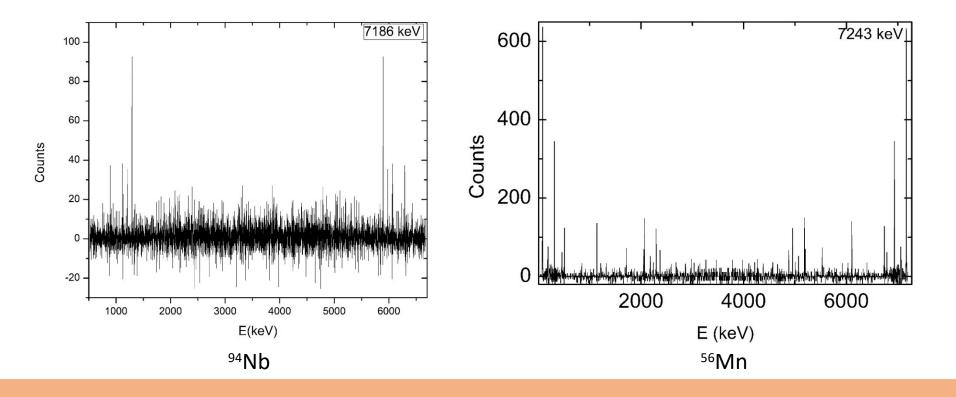
⁵⁶Mn: Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany (left).

Spectrum of sums of amplitudes for coincident pulses (SACP)

Gamma cascade	Final level (E_f)	Spin of level	Part of resolved	Full intensities	
total energy (keV)	of the cascade (keV) $$	E_f	cascade intensity	% per decay	
7227	0	6+	0.25(2)	5.4(20)	
7186	40.9	3+	0.71(2)	6.2(15)	
7168	58.7	(4)+	0.60(1)	7.0(11)	
7114	113.4	(5)+	0.42(2)	5.3(15)	
7087	140.3	(2)-	0.84(1)	2.7(9)	
6916	311.8	(4,5)+	0.57(3)	3.2(10)	
6831	396.2	(3)-	0.51(3)	5.4(11)	
Sum of total			0.56(2)	35.2(40)	

Gamma ray cascade	Final level (E_f)	Spin of level	Part of resolved	Full intensities	
total energy (keV)	of the cascade (keV) $$	E_f	cascade intensity	% per decay	
7270	0	3+	70(5)	17(3)	
7243	26.5	2 +	70(7)	13(3)	
7160	110.4	1+	51(9)	5.0(10)	
7058	212.0	4 +	49(5)	16.0(20)	
6929	341.0	3+	40(6)	6.0(10)	
Sum of total			56(3)	57(5)	

⁹⁴Nb

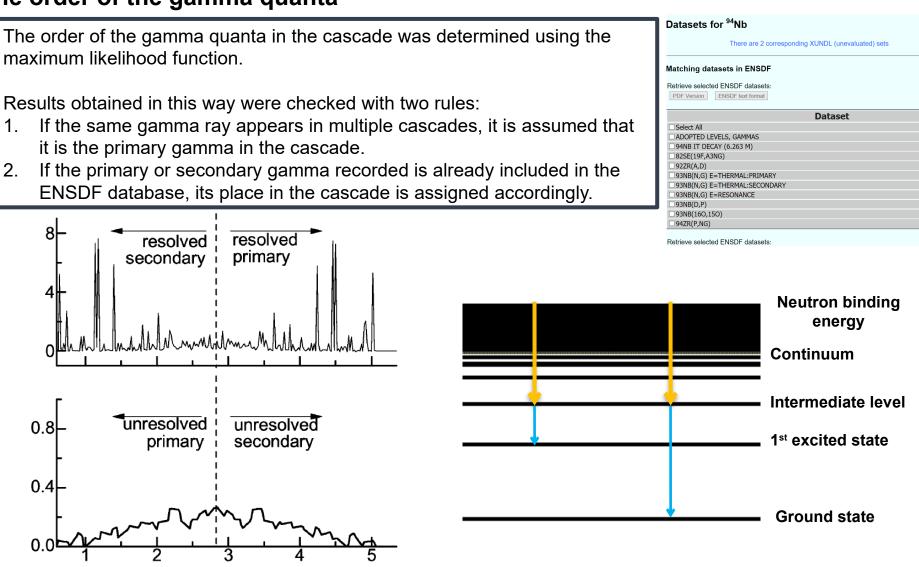

⁵⁶Mn

Determination of the level scheme

Two step gamma cascade (TSC) spectra

TSC spectra represent the cascades from the initial state to the defined final levels of the nucleus. The elimination of Compton background and random coincidences was done by gating on the region nearby the peaks of interest in the SACP spectrum.

The mirror-symmetrical peaks in the TSC spectra represent primary and secondary transitions of the investigated two-step gamma cascade.


Determination of the level scheme

The order of the gamma quanta

maximum likelihood function.

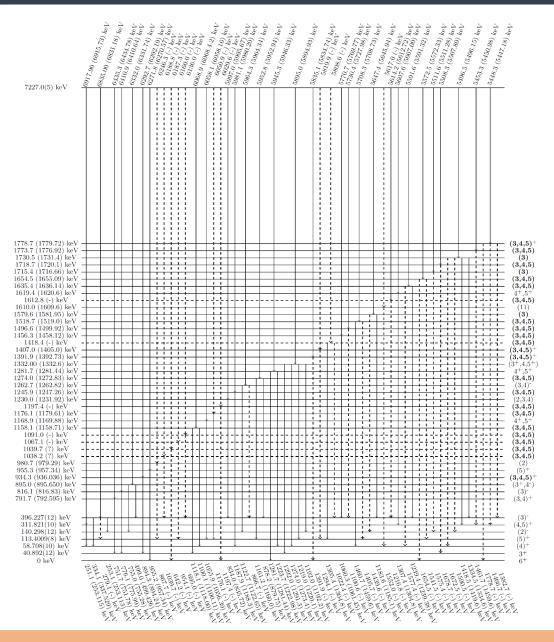
1.

2.

8 resolved resolved secondarv primary unresolved unresolved 0.8 secondary primary 0.4 E₁, MeV

Spectroscopic results for ⁹⁴Nb

⁹⁴Nb


216 energy resolved cascades and, as a result of comparison with ENSDF library data:

27 recommendations for new primary transitions

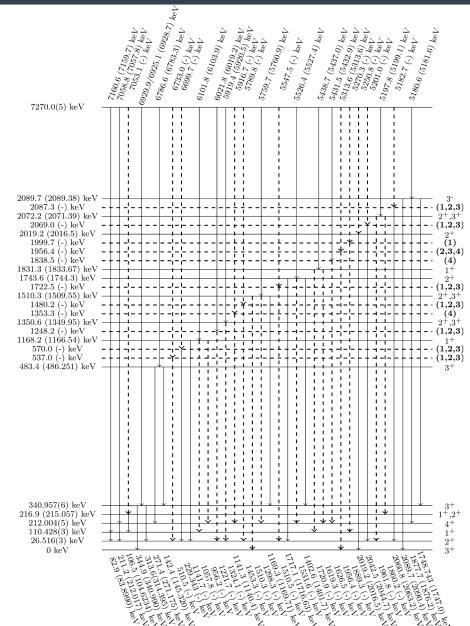
29 recommendations for new energy levels

183 recommendations for **new** secondary transitions.

Knezevic et al. Nuclear Physics A, 993 (2020) 121645

Spectroscopic results for ⁵⁶Mn

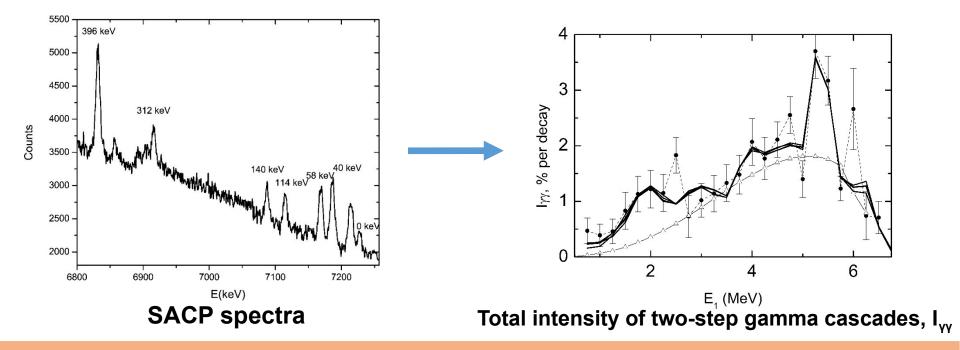
⁵⁶Mn


71 energy resolved cascades and, as a result of comparison with ENSDF library data:

23 recommendations for new primary transitions

24 recommendations for new energy levels

32 recommendations for **new** secondary transitions.


Knezevic et al. Nuclear Physics A, 992 (2019) 121628

Intensity of two-step gamma cascades:

$$I_{\gamma\gamma}(E_1) = \sum_{\lambda,f} \sum_{i} \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda}} \frac{\Gamma_{if}}{\Gamma_i} = \sum_{\lambda,f,j} \frac{\Gamma_{\lambda i}}{<\Gamma_{\lambda i} > m_{\lambda i}} n_j \frac{\Gamma_{if}}{<\Gamma_{if} > m_{if}}$$

Important: The intensity of the cascade as a function of the energy of primary quanta of the cascade depends on the number of available levels as well as the partial widths of γ transition.

Practical model of the cascade gamma-decay

Constructing a model to explain the experimental data: Phenomenological and theoretical representations are combined.

The model of level density

$$\rho = \rho_l \cdot C_{col}$$

$$P_l = \frac{(2J+1)\exp(-(J+1/2)^2/2\sigma^2)}{2\sqrt{(2\pi)\sigma^3}} \Omega_n(E_{ex})$$

$$\Omega_n(E_{ex}) = \frac{g^n(E_{ex} - U_l)^{n-1}}{((n/2)!)^2(n-1)!}.$$
The parametrized model of Strutinsky for density of n quasi-particle nuclear excitations.

$$\rho = \rho_l \cdot C_{col}$$

$$C_{col} = A_l \exp(\sqrt{(E_{ex} - U_l)/E_v} - (E_{ex} - U_l)/E_v) + \beta$$
Increase of a density of collective levels - a phenomenological relation between entropies of phases of the nuclear matter with taking into account a cyclical breaking of Cooper pairs.

Practical model of the cascade gamma-decay

Constructing a model to explain the experimental data: Phenomenological and theoretical representations are combined.

The model for *E*1- and *M*1-transition strength functions

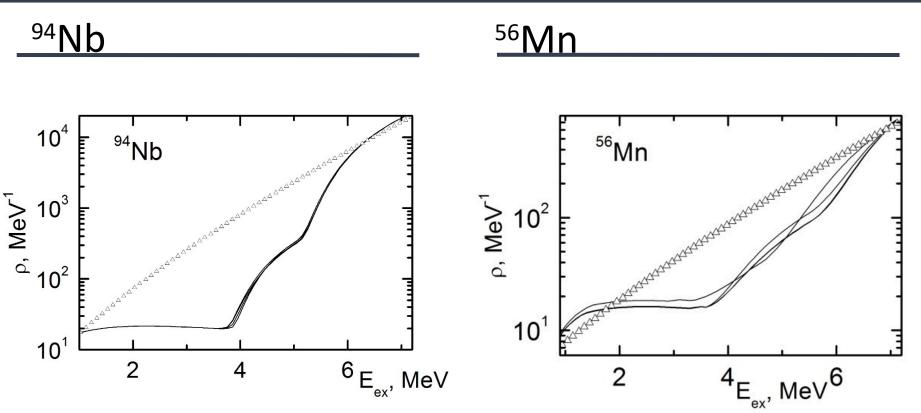
$$k(E1, E_{\gamma}) = w_E \frac{\Gamma_{GE}^2(E_{\gamma}^2 + \kappa_E 4\pi^2 T_E^2)}{(E_{\gamma}^2 - E_{GE}^2)^2 + E_{GE}^2 \Gamma_{GE}^2} + \sum_i W_{Ei} \frac{(E_{\gamma}^2 + (\alpha_{Ei}(E_{Ei} - E_{\gamma})/E_{\gamma})/E_{\gamma}))\Gamma_{Ei}^2}{(E_{\gamma}^2 - E_{Ei}^2)^2 + E_{\gamma}^2 \Gamma_{Ei}^2}$$

$$k(M1, E_{\gamma}) = w_{M} \frac{\Gamma_{GM}^{2}(E_{\gamma}^{2} + \kappa_{M} 4\pi^{2}T_{M}^{2})}{(E_{\gamma}^{2} - E_{GM}^{2})^{2} + E_{GM}^{2}\Gamma_{GM}^{2}} + \sum_{i} W_{Mi} \frac{(E_{\gamma}^{2} + (\alpha_{Mi}(E_{Mi} - E_{\gamma})/E_{\gamma})/E_{\gamma}))\Gamma_{Mi}^{2}}{(E_{\gamma}^{2} - E_{Mi}^{2})^{2} + E_{\gamma}^{2}\Gamma_{Mi}^{2}}$$

KMF (Kadmenskij, Markushev, Furman)

peaks in the functions

Practical model of the cascade gamma-decay

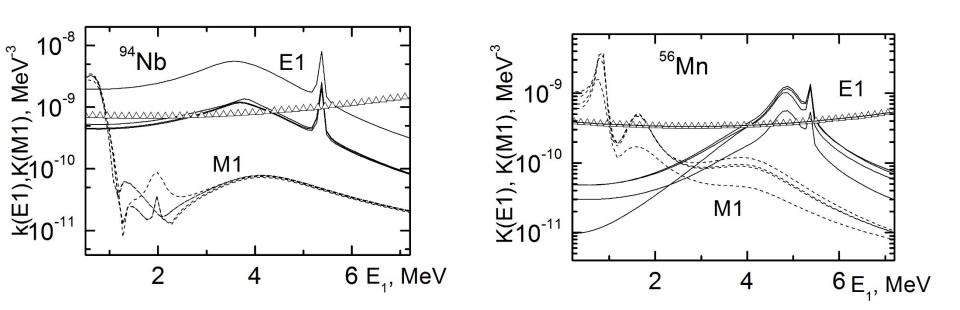

Constructing a model to explain the experimental data: Phenomenological and theoretical representations are combined.

Proposed fitted parameters for our model:

- 1) the break up thresholds energies U_1 up to I=4,
- 2) the E_{μ} and E_{ν} parameters, which are common for all Cooper pairs
- 3) the mutually independent **parameters** A_i of the density of vibrational levels above the break up threshold U_i
- 4) the coefficients w, κ and β

5) the ratio *r* of negative parity and the total level density.

LD results

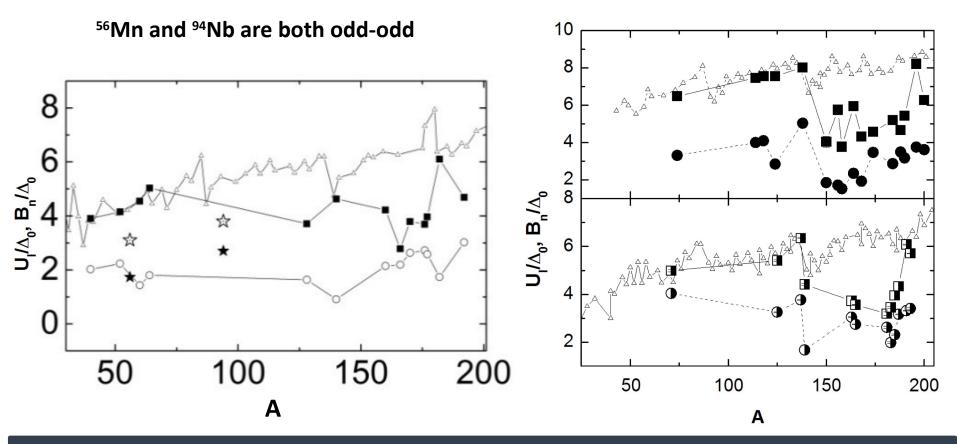


Multiple lines on every graph represent the fitting of data by varying fitting parameters. LD data is compared to the BS Fermi gas model predictions.

RSF results

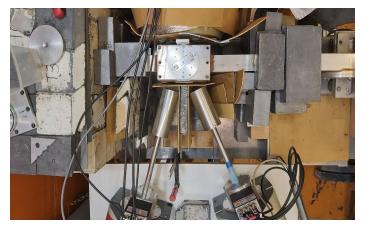
⁹⁴Nb

⁵⁶Mn

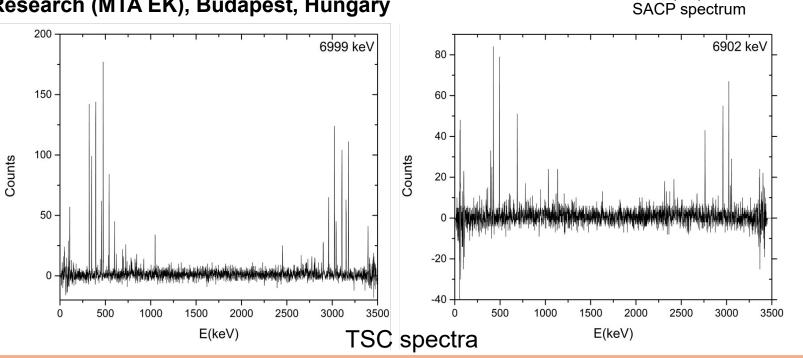


Multiple lines on every graph represent the fitting of data by varying fitting parameters. RSF data is compared to the KMF model predictions.

Cooper pairs braking points


Odd-odd nuclei

Even-even and even-odd nuclei



Experimentally derived breaking thresholds of Cooper pairs make it possible to study the dynamics of superfluid phase of nuclear matter (future plans: theoretical calculations).

Measurement of ¹⁰⁴Rh

PGAA facility of Centre for Energy Research (MTA EK), Budapest, Hungary

1200

1000

900

800

700

600

500

6700

6750

6800

Counts

1100 - 266,8 keV 213 keV

0 keV

7000

97.1 keV

6900

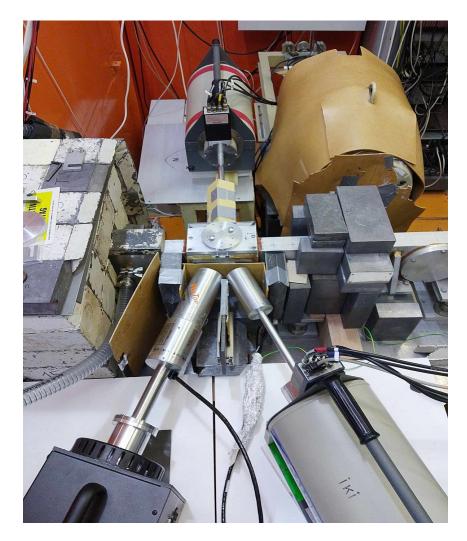
MMMW HMMMMM

6850

E(keV)

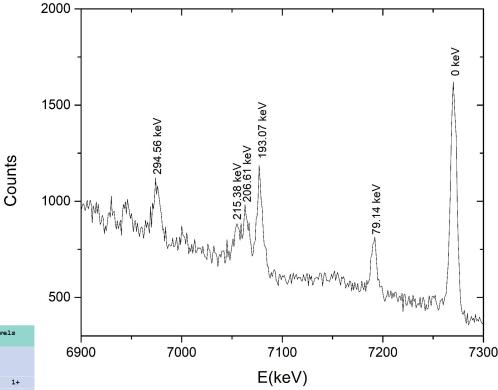
51.4 keV

6950


Measurement of ¹⁰⁸Ag

PGAA facility of Centre for Energy Research (MTA EK), Budapest, Hungary

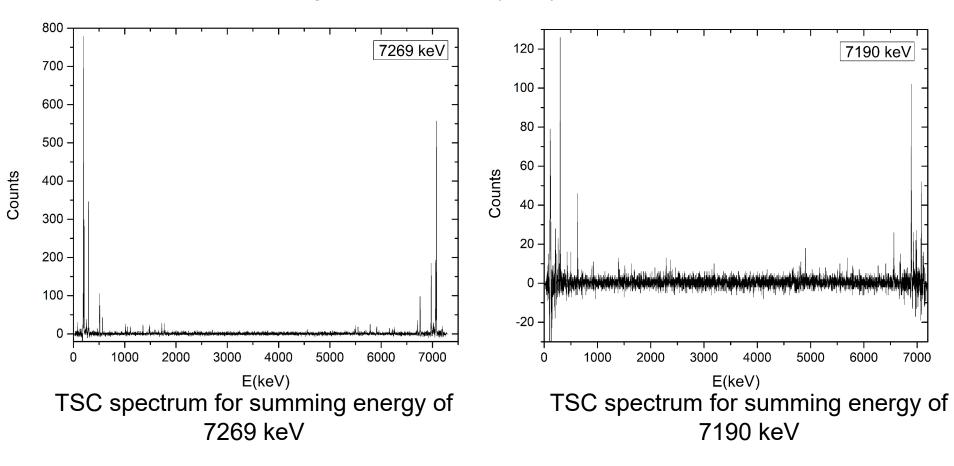
3 HPGe detectors


7 days of measurement

Enriched ¹⁰⁷Ag target (99.07%)

Measurement of ¹⁰⁸Ag

- It was detected gamma transition from neutron binding energy to ground and first 5 excited states



Spectrum of sums of amplitudes for coincident pulses

(keV)	AREF	J~(Ievel)	$T_{1/2}$ (level)	(keV)	± (γ)	Μ(γ)	finai Leveis		
0.0	ABCDE G	1+	$\begin{array}{rrrr} 2.382 & m & 11 \\ \$ & \beta^- = & 97.15 & 20 \\ \$ & \varepsilon = & 2.85 & 20 \end{array}$						
79.1401 <i>23</i>	ABC EFG	2-	1.2 ns 4	79.138 <i>3</i>	100	E1	0.0	1+	
109.466 7	AB H	6+	438 y 9 % IT = 8.7 9 % ε = 91.3 9	30.332 <i>8</i>	100	м4	79.1401	2-	
155.900 7	в	5+,6+		46.435 <i>3</i>	100	M1+E2	109.466	6+	
193.073 <i>3</i>	BCDE G	1+	< 0.5 ns	113.931 <i>2</i> 193.077 <i>6</i>	2.3 <i>2</i> 100 <i>5</i>	E1 M1+E2	79.1401 0.0	2- 1+	
206.614 <i>3</i>	BC E G	2+	< 0.2 ns	127.474 <i>6</i> 206.612 7	0.20 <i>3</i> 100 <i>6</i>	[E1] M1	79.1401 0.0	2- 1+	
215.382 4	B FGH	3+	45.8 ns 7	136.241 <i>6</i> 215.381 7	2.23 17 100 6	E1 E2	79.1401 0.0	2- 1+	
286.7 5 ?	G			286.7 5	100		0.0	1+	
290.18 <i>23</i>	Н			75.5 <i>3</i>	100		215.382	3+	
294.560 <i>3</i>	BCEG	2+	< 0.14 ns	87.944 4 101.483 <i>3</i> 294.563 <i>9</i>	1.03 9 21.5 <i>12</i> 100 8	M1 (+E2) M1 M1+E2	206.614 193.073 0.0	2+ 1+ 1+	

Measurement of ¹⁰⁸Ag

It was obtained 6 two step gamma cascade (TSC) spectra.

Preliminary results: around 10 new levels and gamma transitions are observed

Conclusion

Two-step gamma cascade model can help improve the level scheme and gamma transition data.

Practical model of the cascade gamma-decay developed can go beyond the spectroscopic data and provide information about the LD and RSF (It was previously done for 44 nuclei).

Current and future work

```
Already measured: <sup>94</sup>Nb, <sup>56</sup>Mn, <sup>104</sup>Rh, <sup>108</sup>Ag.
```

```
Finished (spectroscopic part): <sup>94</sup>Nb, <sup>56</sup>Mn
In preparation (spectroscopic part): <sup>104</sup>Rh, <sup>108</sup>Ag.
```

Future plans:

- Level density studies for ⁹⁴Nb, ⁵⁶Mn, ¹⁰⁴Rh and ¹⁰⁸Ag.
- Application of ANN in data analysis

Thank you for your attention!