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Introduction

« Neutron coincidence and multiplicity detectors are widely used in measuring and verifying
nuclear material for safeguards purposes. Monte Carlo codes could be used to simulate
detectors in order to aid in calibration, design, optimization, and analysis of the detection
system. On the other hand, it could be used to predict the behavior of particles and radiation
within detectors or proposed new systems.

« Simulation must take into account factors such as neutron source spectrum, direction,
fission neutron multiplicity, and the detection of thermalized neutrons by proposed counters. In
many cases where for example either representatives reference materials are non-existent or
regular measurements not available, Monte Carlo simulation codes may be the best possible
solution [1-5].



In this work, new designs for coincidence neutron detection systems were
proposed with different neutron detectors (®He, Ar and BF;) and calculations.
The simulated systems include special nuclear material (SNM) with changing the
neutron sources such as; AmLi, AmBe and 252Cf. The aim of this work is
determination of the coincidence system efficiency and neutron distribution
fluence for each proposed system in active mode. The results of the proposed
systems were studied and compared to the active-well neutron coincidence
counter (AWCC) which is employed in uranium testing using the code Monte
Carlo N-Particle eXtended (MCNPX).



Detectors and Interrogation
sources



Neutron detectors




3He Gas filled Detectors

large neutron cross-

: relatively insensitive
section, and

to gamma-rays

neither toxic nor :
corrosive @ can withstand

can be operated at a extreme
lower voltage than environments
some of the

alternative

proportional counters

[6]



Disadvantage

The amount of 3 He worldwide is very
(imited and there is no longer enougt

available to fill the demand.




BF; proportional counter
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active-well neutron
coincidence counter
(AWCC)

High Voltage
Shield Plane

Ni Reflector

Cd Liner

Polyethylene

.
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A
He Tube
104.0cm (41.0in)
206 cm (B.1in)
3~ AmLi Neutron
Source
\

229¢m(9.0in.)

«—— 47.8cm (18.8in.) ——>»



AWCC system

a high-density polyethylene The detectors

ring in which 42 He-3 thermal- 6- groups of 7- tubes each.
neutron detectors are mounted single preamplifier/

in two concentric circles. amplifier/discriminator board

The system uses 2- AmLi
neutron sources (5 x10* n/s
emission rate each) to
activate thermal fission in
assayed samples.

The output pulses are
analyzed by the neutron
analysis shift register
[model JSR-14]

Each source is kept
in a stainless-steel
container.

A tungsten shield is
placed around each
source to reduce the g-
ray emission [6-8]
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F8 Ungated Coincidence tally

The calculations do not include the “accidental coincidence rate,”
which iIs, In any case, subtracted to produce the measured value.
This Is a significant advantage for the precision of the calculation

compared with the precision of an actual measurement.



Coincdence sysytem efficiency

Coincdence sysvtem efficdency
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conclusion

* In order to produce the released particles employed as signs in the assay of particular nuclear
material, these models simulate coincidence neutron systems.

« The models were evaluated by comparing their coincidence efficiency systems to the active-well
neutron coincidence counter (AWCC) using typical safeguards detectors and the simulation of
nuclear data for SNM.

 The three different neutron sources were used (AmLi, AmBe, and 2°2Cf).

« The comparison was carried out between the standard model of AWCC and the proposed systems
in the energy range which covered the thermal neutron region (0-0.025) eV.

* No single model performed noticeably better than the others and we could recommend using any
one of the proposed designs to replace AWCC. However, each difference’s impacts have been
described and should be taken into consideration while selecting a model.
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