

Neutron activation analysis and complementary techniques in environmental studies

Inga Zinicovscaia

inga@jinr.ru/zinikovskaia@mail.ru

¹Frank Laboratory of Neutron Physics, JINR, 6 Joliot-Curie Str., 1419890, Dubna, Russia, ²Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest -Magurele, Romania

Environment pollution

Sources of pollution

https://www.nps.gov/subjects/air/sources.htm

Effect of chemical pollutants on living organisms

Analytical techniques used for elemental analysis

N. Mketo et al. https://doi.org/10.1016/j.trac.2016.09.002

Method	Detectable elements	Sensitivity*
ICP-OES/MS/SFMS	Li to U	ppm to ppt
NAA	H to U	ppm to ppt
AAS	Mainly metallic elements, up to 70 elements	ppm
CHNOS	C, H, N, O, S	0.05–0.1 wt%
XRF	Be to U	10 ppm–1 at%
SEM-EDX	All except H, He, and Li	0.1–1 at%
ERDA	H to U	0.1–0.5 at.%
RBS	Be to U	0.1 at%

https://measurlabs.com/blog/elemental-analysis-applications-and-method-comparison/

Main steps of neutron activation analysis

Measurement

Specta processing

Results

	Na		Mg				
Conc, µg/g	g Err, % MDC, μg/g		Conc, µg/g	Err, %	MDC, µg/g		
420	9	3.65	760	16	19.9		
230	9	2.68	790	14	13.4		
272	9	2.15	440	17	13.9		
340	9	2.79	730	12	16.8		
206	9	2.2	370	13	14.7		
163	9	1.98	600	14	10.8		
240	9	2.29	930	14	12		
990	9	6.06	620	17	21.3		
360	9	3.31	710	12	14.6		
440	9	1.26	530	12	15.5		

- \checkmark high sensitivity to a majority of elements;
- ✓ good selectivity;
- ✓ a possibility of simultaneously determining a large number of elements;
- ✓ The method works for a very wide concentration range, from percent level down to the ppt and even sub-ppt level.
- ✓ independence of the results on the form of chemical compounds;
- ✓ NAA is in an unbeatable position in analysis of the rare earth elements (REE)
- ✓ A nondestructive nature, which allows avoiding the risk of contamination of samples with reagents or their incomplete dissolution;
- ✓ easy procedure for preparation of samples for analysis.

- hecessity of using nuclear reactors;
- problems arising from storage and disposal of nuclear waste;
- ➤ time required for analysis.

Reactor and Radioanalytical complex REGATA

Reactor and Radioanalytical complex REGATA

https://flnp.jinr.int/en-us/main/facilities/ibr-2/regata

Mg, Al, Si, Cl, I, Ti, V, Cu, Mn, Ca, S and Dy

- ✓ Irradiation channel: Ch 2 (full neutron spectrum)
- ✓ Weight of samples: 0.1-0.5 gram
- ✓ Irradiation time: 1-30 min

Na, K, Sc, Cr, Fe, Co, Ni, Zn, Ga, As, Se, Mo, In, Sn, Br, Rb, Sr, Zr, Sb, Cs, Ba, Ag, Cs, La, Ce, Sm, Tb, Hf, Ta, Nd, Nb, Y, Yb, W, Re, Ir, Hg, Au, Th and U

- Irradiation channel: Ch 1 (Cd- screen, epithermal and fast neutrons)
- Weight of samples: 0.1-0.5 gram
- ► Irradiation time: 3-5 days
- Cooling -3.5 days/ Repacking
- First measurement- 30 min.(live time), directly after repacking
- Cooling time 20 days after the end of irradiation/ Second measurement – 1.5 hours (live time)

Complementary techniques

The PlasmaQuant 9100 Elite

Thermo ScientificTM iCETM 3000 Series AA spectrometers

Milestone's DMA-80 Direct Mercury Analyzer

Scientific directions

Assessment of air pollution

Passive biomonitoring

United Nations Economic Commission for Europe

International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops

Working Group on Effects - 1981

Active biomonitoring

Sphagnum girgensohnii Russow

Kemerovo region, Russia

The map of moss bags exposur

Content of elements in samples in comparison with control The mean CF values for mosses samples exposed for two months in urban areas in Kemerovo region

Assessment of water pollution

Corals sampling map (Al-Luhaya harbor and Al-Saleef harbor, Yemen).

Assessment of water pollution

Pearson correlation coefficient between element content in corrals collected from (a) Al-Luhaya and (b) Al-Saleef

In corals collected from Al-Luhaya, a strong correlation was obtained between Al-Fe-Cr-S, Cd-Zn, Cr-V-Fe, Fe-V-S, and V-S

In corrals from Al-Saleef, a strong correlation was obtained between Al-V-Fe, Cr-Fe, Cd-Ni-Cu-Co, Co-Ni-Cu, Cu-Ni-Mn, and Fe-V.

Assessment of water pollution

Contamination factor and pollution load index values for corrals collected from Al-Luhaya and Al-Saleef ports, Yemen

	CF					
Element	Al-Luhaya	Al-Saleef				
Zn	0.65	1.73				
Pb	0.26	0.52				
Mn	0.31	0.54				
Fe	2.86	3.43				
Cr	0.38	0.49				
Со	0.37	0.97				
Ni	0.91	1.84				
Cu	0.50	0.58				
PLI	0.56	0.98				

Principal component analysis for corrals collected from Al-Luhaya and Al-Saleef ports, Yemen.

Wastewater treatment

Chemical composition of the leather tannery complex effluent

Major ions	Concentration, mg/L	Element	Concentration, mg/L		
Potassium	17.91	Fe	5.82		
Sodium	236.6	Cd	0.36		
Magnesium	0.5	Cu	0.10		
Calcium	2.5	Ni	0.10		
Carbonates	0.15	As	4.95		
Bicarbonate	0.46	Zn	0.13		
Chlorine	12.0				
Ammonia	0.8				
Sulphates	1000				
Phosphates	7.3	pН	7.5		

First stage - cold atmospheric plasma treatment

Second stage - adsorption

First stage - cold atmospheric plasma treatment

Concentration of NO₂⁻ and NO₃⁻ in effluent treated with plasma

Level of H_2O_2 and NaCl in effluent treated with plasma

Concentration of DO and TDS in effluent treated with plasma

pH and conductivity of effluent treated with plasma

First stage - cold atmospheric plasma treatment

Metal ion removal from tannery effluent on (a) Saccharomyces cerevisiae and (b) titanosilicate ETS-10

	Removal, %						
Metal	Titanosilicate ETS-10 Saccharomyces cerevisia						
Cu	100	100					
Pb	95	94					
Cd	96	96					
Fe	95	96					
Zn	88	66					
Ni	100	67					
As	41	44					

Assessment of soil pollution

Map of soil samples sampling locations. Black contour shows the City of Moscow metropolitan area.

The distribution of the average values ± corresponding uncertainties of EF (a), CF (b) and Igeo (d) of Zn, As, Sb and Hg, as well as the PLI (d) for each of the 15 investigated Moscow topsoil sampling sites.

Soil bioremediation

Soil bioremediation

Lenin avenue

*Japanese millet

Kosogorsky Metallurgical Plant

Japanese millet*

Embankment

Tulachermet

Characteristics of urban soils used in the study

Soil sample	Background (Yasnaya Polyana)	КМР	Tulachermet	Highway (Lenina Ave.)	Embankment	
Soil type	clay loam	clay loam	sandy loam	clay loam	sandy loam	
рН	6.20	7.26	7.35	7.29	7.31	
Mn	900±87	6600±260	950±87	700±58	1600±156	
Fe	39250±1960	45750±2290	116650±5830	45300±2260	97700±8754	
V	65±3.2	55±4	145±7.2	59±2.9	91±5	
Cr	116±8	137±12	117±4.5	70±2.8	1260±80	
Ni	41±3	45±4	42±3.3	35±2.8	285±23	
Cu	29±2	52±4	52±4 27±0.8 30		1188±89	
Zn	23±2	192±9	71±3.6	106±5.3	4579±230	
Pb	28±2	71±6	24±0.7	36±1.1	185±14	
As	5.1±0.4	9.9±0.5	4.3±0.2	5.4±0.3	12.5±0.6	

Removal of elements from soils *Echinochloa frumentacea* in case of polyelement pollution, g/ha

Element	KMP	TCh	Lenina Av. Embankment		Background	
Pb	0.84	0.35	0.73 0.98		0.18	
V	1.02	0.89	1.22 0.74		0.41	
Cr	1.69	1.30	2.68 5.11		0.76	
Ni	2.35	3.35	5.95	5.95 5.26		
Cu	33.8	17.1	51.7	51.7 35.9		
As	0.49	0.29	0.25 0.22		0.10	
Fe	488	528	535 366		231	
Mn	290	141	329	64	160	
Zn	168	57.1	180 508		43.5	

Control of quality and safety of foodstuffs

Golden Delicious

Record

Ialovenschii Ustoicivii

Apple

Transfer factors in system soil-leafapple

Leaves-soil: K (TF_{L/S}=3.1), Zn (TF_{L/S}=2.1), Sr (TF_{L/S} =1.9), and Mo (TF_{L/S} =1.1) and Ca (TF_{L/S}=0.96). Fruits-soil: K (TF_{F/S}= 1.6) and U (TF_{F/S} = 2.1).

Fruits- leaves: TF> 1.0 was obtained for Na, Cl, and Cr.

Estimated daily intake of metal (DIM) and potential health hazards (HQ) from fruit

	Apple			Plum			Grape			
Element	С	DIM,	HQ,	C mg/kg	DIM,	HQ,	С	DIM,	HQ,	R _f D,
	mg/kg	mg/day	mg/kg/da	f.w.	mg/day	mg/kg/da	mg/kg	mg/day	mg/kg/da	mg/day
	1.w.		У			У	f.w.		У	
Cr	3.9	1.2	0.01	0	0	0	0.48	0.1	0.004	105
Со	0.5	0.1	0.05	0.7	0.2	0.07	0.6	0.2	0.06	3
Fe	78	23	0.4	151	45	0.75	8.8	2.6	0.04	10-60
Mn	8.1	2.4	0.5	2.2	0.6	0.1	1.7	0.5	0.1	0.5-5.0
Ni	6.7	2.0	1.4	1.4	0.4	0.3	1.8	0.2	0.2	1.4
V	0.6	0.2	0.1	0	0	0	1.3	0.4	0.3	1.8
Zn	33	9.9	0.7	25	7.5	0.5	6.4	1.9	0.1	15

Effect of nanoparticles on plants

AuNPs

CuNPs

The content of copper and gold in parsley segments grown on soil watered with (a) AuNPs and (b) CuNPs determined by ICP-MS/OES techniques, (NPs concentrations 1-200 mg/L, duration of experiment 10 days

Change in the content of carotenoids and total chlorophyll in the aerial parts of parsley grown on soil watered with (a) AuNPs and (b) CuNPs

Effect of nanoparticles on animals

To study uptake of AgNPs (8.7 nm) both for mothers and the offspring experimental females were drinking the AgNPs solution with concentration of 25 μ g/ml since one week before pregnancy and to the end of lactation (one month after birth).

Silver content in the mice and their offspring organs

Examples of movement pattern of animal with different types of behavior in the Morris test: 1 – directional search, 2 – random searching, 3 – thigmotaxis (strategy of incapable individuals).

Thank you for attention!