MANIFESTATION OF THE FISSION DYNAMICS IN MUON-INDUCED PROMPT FISSION

F.F. Karpeshin

D.I.Mendeleyev Institute for Metrology, Saint-Petersburg, Russia

 In muonic atoms of ²³⁸U, the nuclei can undergo prompt fission through non-radiative transitions of the muon: 2p - 1s, 3p - 1s, 3d - 1s etc. Main features of the fission dynamics are studied in prompt fission: augmentation of the barrier, dynamics of the saddle-to-scission descent, muonic conversion and characteristic X-rays from fission fragments supply information on the multipolarity of electromagnetic transitions and charge distribution, structure of nuclear transition currents. Revision of the nonradiative transition probabilities comprises the present purpose.

μ-Atom Transitions

NON-RADIATIVE TRANSITIONS IN MUONIC ²³⁸U ATOMS

M.Ya.Balatz, L.N.Kondrat'ev, L.G.Landsberg, P.I.Lebedev, Yu.V.Obukhov, and B. Pontecorvo. Soviet Phys. ZETP, **11**, 1239 (1960)

EXPERIMENTAL NON-RADIATIVE TRANSITION PROBABILITIES

Ch. Roesel, P. David, H. Folger, H. Haenscheid et al. Radiationless transition probabilities in muonic 208Pb, 232Th, and 238U. Z. Phys. A - Hadrons and Nuclei **340**, 199-208 (1991)

	$2p \rightarrow 1s$	$2p^{l} \rightarrow 1s$	$2p^h \rightarrow 1s$	$3p \rightarrow 1s$	$3d \rightarrow 1s$	
This work	26.2 ± 2.6	21.6±3.2(1.6)	31.1±2.8(1.3)	88.9 ± 4.3	12.8 ± 1.4	
Zaretski & Novikov [2, 3] with σ_i from [27] with σ_i from [28]	22.4 29.8	21.1 28.4	24.2 32.0	64.7 68.5		
Teller & Weiss [7]	20.7	20.0	21.7	59	9.6	
Karpeshin & Nesterenko [8]	$11 \div 15^{a}$ $19 \div 26^{b}$			55 ÷ 65° 57 ÷ 69 ^d	19 ÷ 24° 25 ÷ 32 ^f	

MICROSCOPIC NON-RADIATIVE TRANSITION PROBABILITIES

F F Karpeshin and V 0 Nesterenko, J. Phys. B **17**, 705 (1991)

$$\Gamma_{r1} = \alpha_{\mu}^{(d)}(i \rightarrow f) \frac{8\pi(L+1)}{[(2L+1)!!]^2} \,\omega^{2L+1} b(EL; 0 \rightarrow \omega)$$

QPNM:

$$b(EL; 0 \rightarrow \omega) = \sum_{g} B(EL; 0 \rightarrow \omega) \frac{\Delta/2\pi}{(\omega - \omega_g)^2 + (\Delta/2)^2}$$

Theory of nonradiative transitions

F.F. Karpeshin, I.M. Band, M.B.Trzhaskovskaya, M.A. Listengarten, Phys. Lett. B 372, 1 (1996)

2-photon radiative width:

$$\Gamma_{2\gamma}(1-2-3) = \Gamma_{\gamma}^{(a)}(1 \to 2) \frac{\Gamma_{\gamma}^{(a)}(2 \to 3)}{\Gamma_2}$$

$$\frac{\Gamma_{nr}}{\Gamma_{2\gamma}} = \sigma_{ph}(\omega) \frac{\alpha_d(2 \to 3; \omega_1)}{\Gamma_{\gamma}^{(a)}(2 \to 3)} \left(\frac{\omega}{\pi}\right)^2$$

NON-RADIATIVE EXCITATION OF GDR

J. T. Caldwell et al. Phys. Rev. C 21, 1215 (1980)

Transition	$W_{nr}, \%$		$\Gamma_{nr}/\Gamma_{\gamma}^{(a)}$		
	theory	experim.	theory	experim.	
$2p_{3/2} \rightarrow 1s$	31.6	31.1 ± 2.8	0.46	0.45	
$3p_{3/2} \rightarrow 1s$	80	88.9 ± 4.3	3.95	5.49 - 13.7	

CONCLUSION

- Prompt fission provides multilateral information about fission dynamics. We understand a lot of data results concerning 2p 1s nonradiative transitions. Augmentation of fission barrier and suppression of the fission mode is of great interest.
- Former contradiction between theory and experiment for the 3p 1s transition has been considerably smoothed. At the same time, such a factor like suppression of the fission decay channel in muonic atoms is not involved in the analysis. This channel comprises as much as 20% of the total decay width. Such ruling out a decay channel may increase the potoabsorption cross-section by the same factor. This also depends on the decay-to-spread width. Therefore, this circumstance remains challenging for future investigations.

Thanks!