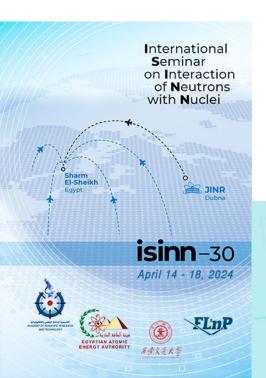


Soft rotator multiband optical model parameters for fissile actinides



D.Martyanov, R.Capote, J.M.Quesada Molina, S.Chiba

International Seminar on Interaction of Neutrons with Nuclei

Outline

- Model overview
 - Dispersive Lane-consistent multiband coupled channels optical model for soft deformed nuclides
- Optical potential building routine
- Results
 - ²³⁹Pu and ²³³U (multiband, many data to fit)
 - ²³⁵U and ^{235m}U (isomeric state)
 - Pu241 (scarce experimental data)

Model feature 1: Dispersive relation

Casuality → Kramers–Kronig relations:

 Energy-dependent imaginary part of the potential yields additional (polarization) term to the real part:

$$\Delta V(E) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{W(E')}{E' - E} dE'$$

- Physically realistic and constraint energy dependence of the potential
- Used energy dependence allows analytical expressions for $\Delta V(E)$
- Result better constrained model!

Model feature 2: Lane consistency

Isospin-symmetric form of optical potential (only nuclear part without Coulomb):

•
$$V_{pp} = V_0 + \frac{N-Z}{4A}V_1$$
,

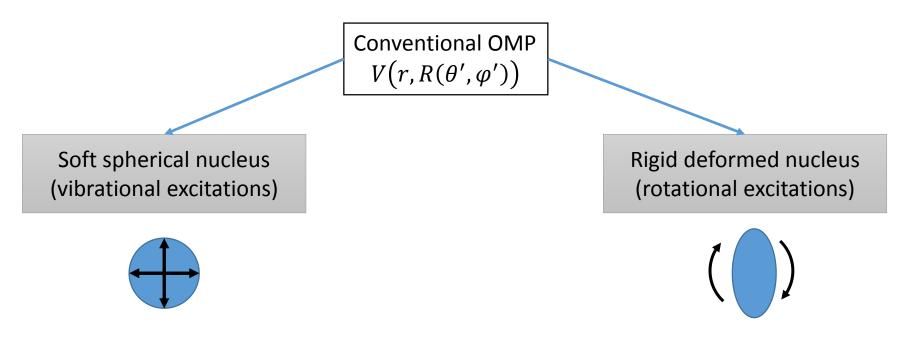
$$\bullet V_{nn} = V_0 - \frac{N-Z}{4A}V_1$$

•
$$V_{pn} = \frac{\sqrt{N-Z}}{2A} V_1$$

Allows same parameterization for direct neutron, proton scattering and (p,n)-reactions

Model feature 3: Extended coupling for soft deformed targets

Optical model for soft deformed nuclei



Taylor expansion near sphere

Explicit deformations → vibrations bad convergence for big deformations

Static multipolar expansion

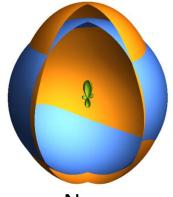
Good convergence for big static deformations no explicit deformations → no vibrations!

But actinides are both considerably deformed in GS and soft for vibrations

Solution: Taylor expansion near axial static form

$$R_{i}(\theta', \varphi')$$

$$= R_{0i} \left\{ 1 + \sum_{\lambda=2,3; even \, \mu} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta', \varphi') + \sum_{\lambda=4,6} \beta_{\lambda0} Y_{\lambda0}(\theta') \right\}$$



$$= R_i^{zero}(\theta') + \delta R_i(\theta', \varphi'; \delta \beta_2, \gamma, \beta_3)$$

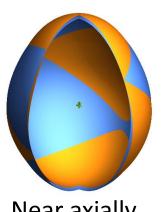
$$\beta_2 = \beta_{20} + \delta \beta_2$$
$$\langle \delta \beta_2 \rangle, \langle \beta_{20} \gamma \rangle, \langle \beta_3 \rangle, \langle \beta_{00} \rangle \ll \beta_{20}$$

$$= R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$$

$$+ R_{0i} \left\{ \beta_{20} \left[\frac{\delta \beta_{2}}{\beta_{20}} \cos \gamma + \cos \gamma - 1 \right] Y_{20}(\theta') \right.$$

$$+ \frac{(\beta_{20} + \delta \beta_{2}) \sin \gamma}{\sqrt{2}} [Y_{22}(\theta', \varphi') + Y_{2-2}(\theta', \varphi')]$$

$$+ \beta_{3} Y_{30}(\theta') + \beta_{00} Y_{00} \}$$



Near axially deformed

Potential expansion near axially deformed shape

$$V(r,R(\theta',\varphi'))$$

$$\approx V(r,R^{zero}(\theta')) + \frac{\partial}{\partial R}V(r,R(\theta',\varphi'))\Big|_{R^{zero}(\theta')} \delta R(\theta',\varphi';\delta\beta_2,\gamma,\beta_3)$$

$$\approx V(r,R^{zero}(\theta')) + \frac{v_2(r)}{R_0\beta_{20}} \delta R(\theta',\varphi';\delta\beta_2,\gamma,\beta_3)$$

$$R_{zero}(\theta') = R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$$

$$v_2(r) = 2\pi \int_0^{\pi} V(r,R^{zero}(\theta')) Y_{20}(\theta') \sin \theta' \, d\theta'$$

E.S. Soukhovitskii et al, PRC 94 (2016) 64605

Coupled channels matrix elements

$$\begin{split} &\langle i|V(r,\theta,\varphi)|f\rangle \\ &= \sum_{K}^{l} \sum_{K'}^{l'} A_{K}^{l\tau} A_{K'}^{l'\tau'} \left\{ \sum_{\lambda=0,2,4,\dots} \nu_{\lambda}(r) \langle IK||D_{;0}^{\lambda}||I'K\rangle A \left(ljI;l'j'I';\lambda J\frac{1}{2}\right) \delta_{KK'} \right. \\ &\quad + \nu_{2}(r) \left\{ \left[\left[\boldsymbol{\beta}_{2} \right]_{eff} + \left[\boldsymbol{\gamma}_{20} \right]_{eff} \right] \langle IK||D_{;0}^{2}||I'K\rangle A \left(ljI;l'j'I';2J\frac{1}{2}\right) \delta_{KK'} \right. \\ &\quad + \left[\boldsymbol{\gamma}_{22} \right]_{eff} \langle IK||D_{;2}^{2} + D_{;-2}^{2}||I'K\rangle A \left(ljI;l'j'I';2J\frac{1}{2}\right) \right. \\ &\quad + \left[\boldsymbol{\beta}_{3} \right]_{eff} \langle IK||D_{;0}^{3}||I'K\rangle A \left(ljI;l'j'I';3J\frac{1}{2}\right) \delta_{KK'} \end{split}$$

$$&\quad K = 2 \text{ band coupling}$$

$$&\quad + \left[\boldsymbol{\beta}_{0} \right]_{eff} \delta_{KK'} \delta_{II'} \delta_{jj'} \delta_{ll'} \bigg\} \bigg\}$$
Octupole coupling (negative parity band)

Volume conservation correction

Effective deformations

$$\begin{aligned} [\boldsymbol{\beta_2}]_{eff} &= \left\langle n_i(\beta_2) \left| \frac{\delta \beta_2}{\beta_{20}} \right| n_f(\beta_2) \right\rangle \\ [\boldsymbol{\gamma_{20}}]_{eff} &= \left\langle n_i(\gamma) \left| \cos \gamma - 1 \right| n_f(\gamma) \right\rangle \\ [\boldsymbol{\gamma_{22}}]_{eff} &= \left\langle n_i(\gamma) \left| \frac{\sin \gamma}{\sqrt{2}} \right| n_f(\gamma) \right\rangle \\ [\boldsymbol{\beta_2}]_{eff} &= \left\langle n_i(\beta_2) \left| \frac{\delta \beta_2^2}{\beta_{20}^2} \right| n_f(\beta_2) \right\rangle \\ [\boldsymbol{\beta_3}]_{eff} &= \left\langle n_i(\beta_3) \left| \frac{\beta_3^2}{\beta_{20}^2} \right| n_f(\beta_3) \right\rangle \\ [\boldsymbol{\beta_3}]_{eff} &= -\frac{\beta_{20}}{\sqrt{4\pi}} [2[\boldsymbol{\beta_2}]_{eff} + [\boldsymbol{\beta_2}^2]_{eff} + [\boldsymbol{\beta_3}^2]_{eff}] \end{aligned}$$

Effective deformations are defined by collective nuclear wavefunctions Soft rotator model (nuclear structure) is needed here!

Towards odd nuclides

We have soft-rotator model for even-even actinides, but no appropriate nuclear model (describing softness) for odd-A ones...

- Nuclear softness collective effect, determined mainly by the even-even core, and varies smoothly from nucleus to nucleus
- $\langle \psi_{odd} | \beta | \psi_{odd} \rangle \approx \langle \psi_{core} | \beta | \psi_{core} \rangle$
- We may try to couple levels for bands built on singleparticle state same as in GS
- We need to build appropriate core "states" (spin)

Major implications of extended couplings

- Saturated coupling (at least for even-even nuclides)
- Multiband coupling (for bands, corresponding to collective excitations) → impact comparable to one from 2nd or 3rd levels from main rotational band
- Nucleus stretching due to rotation (centrifugal forces)

 alter predictions even when only levels from main rotational band are coupled
- Additional monopole coupling due to account of volume conservation in vibrating nucleus → additional changes of predicted cross sections

Regional potential for actinides: calculation algorithm

Exp. data **Models** Fitting parameters Levels' energies/spins/parities of even-even nuclide or Soft rotor nuclear model SRM parameters equivalent core of odd-A nuclide Effective deformations ²³⁸U and ²³²Th **OMP** parameters **Predictions** and nuclear exp. scattering data and coupling scheme deformations

Coupled channels optical model

Other actinide's exp. scattering data and coupling scheme

Nuclear deformations

Optical

model

predictions

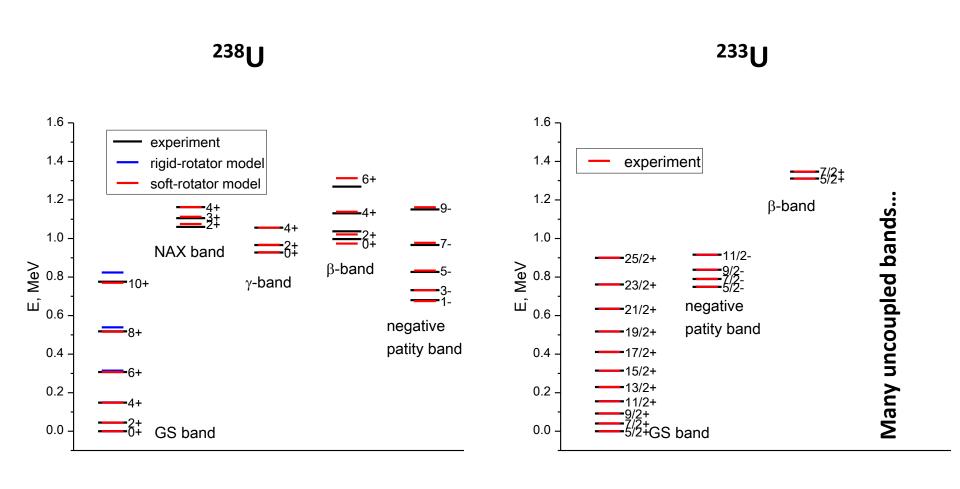
Fitting parameters

- Nuclear softness and non-axiality (all soft-rotator model parameters) – from level structure, missing levels for coupling can be restored for even-even
- Many experimental data for optical model (²³⁸U and ²³²Th)

 fit optical potential parameters and deformations
- Scarce experimental data (233 U, 239 Pu...) fit only deformations (β_{20} , β_{30} , β_{4} , β_{6}) with fixed potential
- Only strength functions or nothing available (241 Pu...) take deformations from global nuclear mass models, no additional fitting or only β_{20} fit to reproduce SF

WS4 deformations work better than **FRDM2012** for eveneven actinides!

Coupling scheme

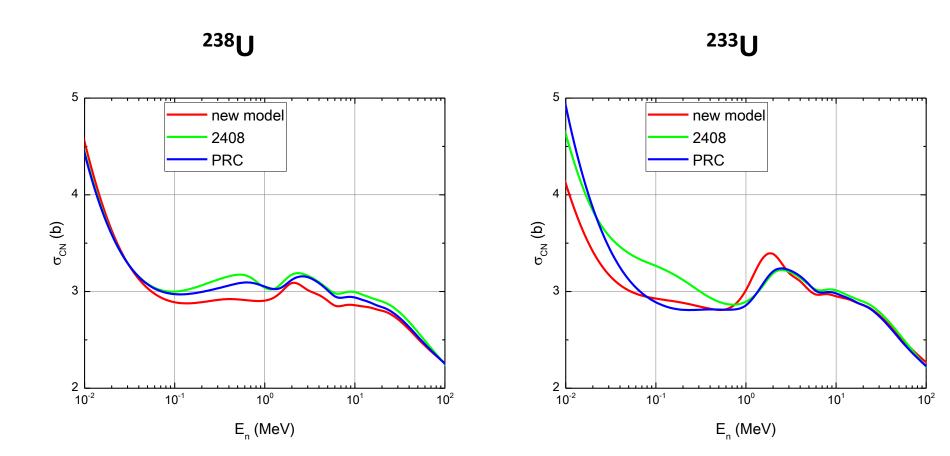


Saturated coupling scheme: almost all low-lying levels are coupled (and described by SRM)

Only a few bands coupled: those that correspond to vibrational excitation of the core and sp-wavefunction same as in GS (ENDSF)

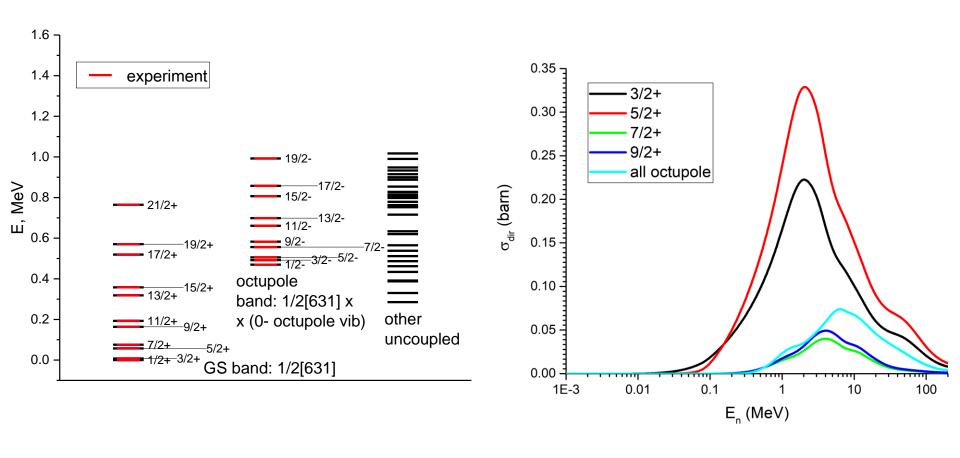
Comparison with other potentials

CN XS changes up to 0.3 barn between models fitted to the same data



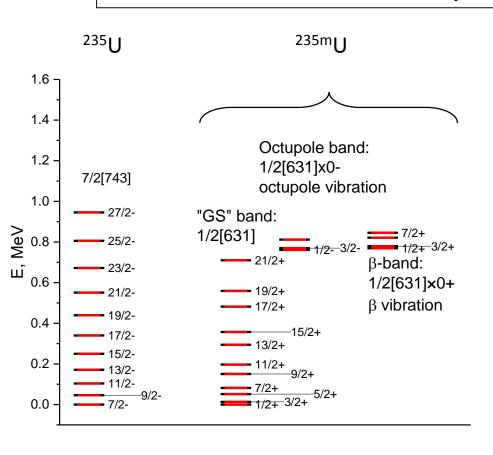
²³⁹Pu: direct level excitation

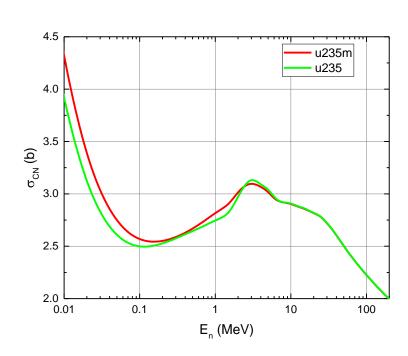
Other bands' impact is comparable to one from 2nd/3rd excited GS band level



²³⁵U and ^{235m}U: change of CN cross section

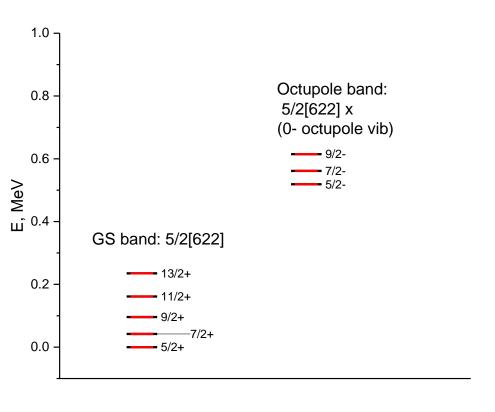
Only one band coupled for ²³⁵U but softness is still important Isomeric state has other coupled levels \rightarrow cross section changed

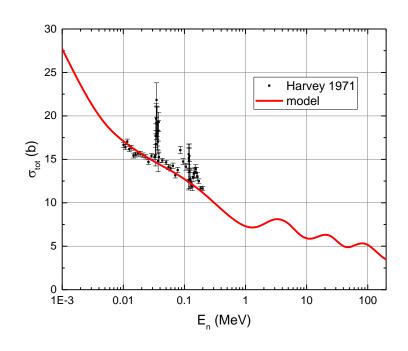




²⁴¹Pu: total CS

We fit only β_2 to reproduce S_0 value, but scarce URR total CS is fairly reproduced





Summary

- Dispersive Lane-consistent coupled channels optical model with extended couplings is described
- Softness and multiband coupling are important to reach accurate calculations results for both eveneven and odd-A nuclides
- Suggested method to calculate optical model predictions for odd-A, poorly investigated nuclei or isomeric states is demonstrated on ^{233,235,235m}U and ^{239,241}Pu

Thank you for your attention!

Backup slides

Software

All calculations performed by two FORTRAN codes which have been being developed by E. Soukhovitskii and coworkers for many years:

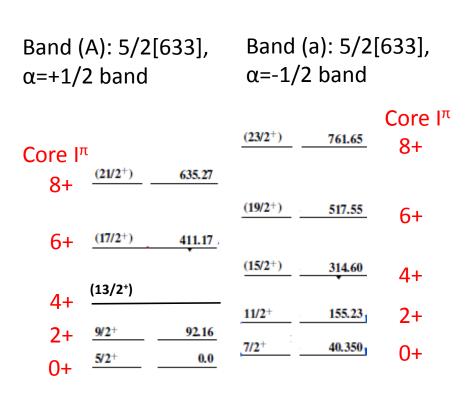
- optical model code OPTMAN (optical potential fitting, cross-section calculations) with dispersive corrections as discussed with Quesada, Capote, Chiba et al.
- nuclear structure code SHEMMAN (soft-rotator model parameters fitting and levels prediction)

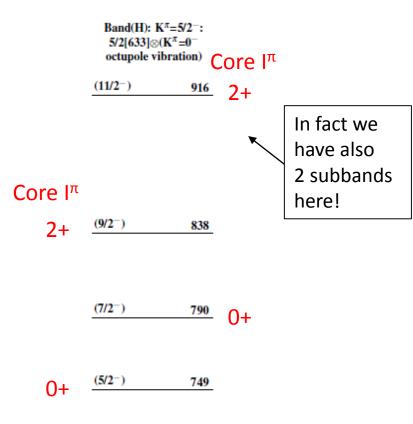
OPTMAN

- recommended to use for SRM potentials compiled in the IAEA reference input parameter library (RIPL-3) for nuclear data evaluation
- used with the EMPIRE nuclear reaction model code for basic research and nuclear data evaluation (e.g. recent Fe-56 CIELO evaluation)

RIPL-3: Capote, R. et al., Nucl. Data Sheets 110, 3107–3214 (2009) OPTMAN and SHEMMAN: E. Sh. Sukhovitski et al., JAERI-Data/Code 2005-002 (2005) Dispersive corrections: Soukhovitski, E. Sh. et al, JAEA-Data/Code--2008-025 (2008) Soft description of Fe56: W. Sun et al, Nucl. Data Sheets 118, 191-194 (2014)

Core states assignment (²³³U states from ENSDF)





GS band

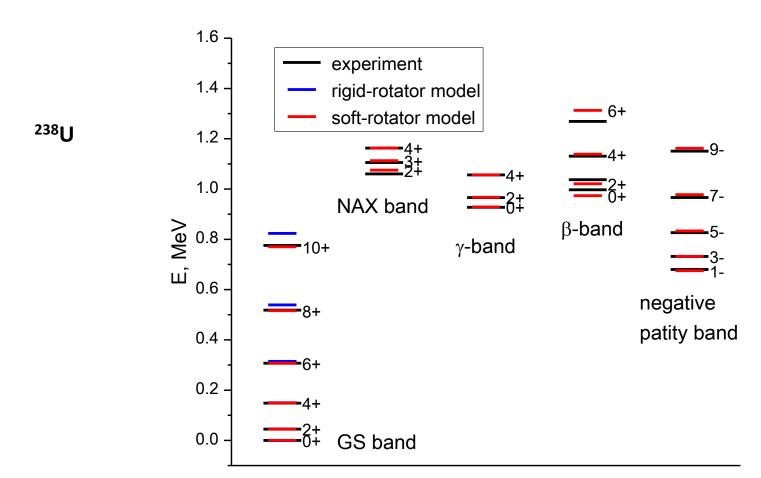
Core state: no vibrational excitation, only rotation

Octupole band

Core state: first octupole excitation, rotation

Is softness important?

GS band levels energies deviate from rigid rotor level sequence for high spins due to nuclear stretching form centrifugal forces. Soft-rotor model describes experimental energies and other bands as well.

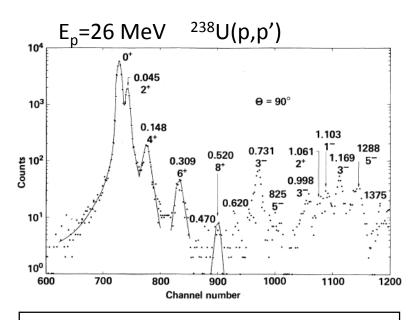


Are other bands important?

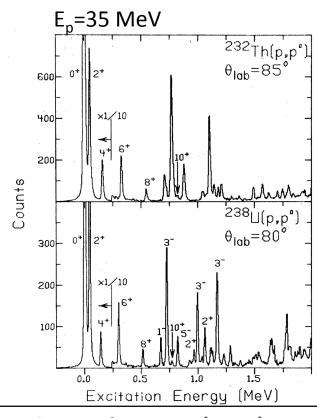
No nucleon scattering data for other-than-GS band in EXFOR for actinides

. . .

but there are clear evidences of levels from other bands in some proton inelastic scattering experimental works



L. F. Hansen et al, PRC 25 (1982) 189



C. H. King et al, PRC 20 (1979) 2084

Approaches to effective deformations

Effective deformations as fitting parameters

- Rough model to keep minimal number of parameters, only multiband coupling accounted (rigid rotor coupling within
- Ambiguous description for nuclides with poor experimental data

each band)

 No additional knowledge needed

Direct calculation

- Nuclear structure model for soft deformed nuclei is needed
- More consistent result
- Gives all model effects

For even-even nuclides using SRM:

E.S. Soukhovitskii et al, PRC 94 (2016) 64605

D. Martyanov et al, EPJ Web Conf. 146 (2017) 12031 (ND2016)

Recent dispersive OMP development

Dispersive Lane-consistent OMP for deformed nuclei (actinides):

- 2008 rigid rotor regional potential (RIPL 2408)
- 2015 parametric multiband coupling, rigid intra-band coupling; good description of even-even, but only spexcitations were used for odd-A nuclides (PRC 2016)
- 2016 soft rotor description of even-even nuclei (ND 2016)
- 2019 approach to soft odd-A nuclides: collective excitation of the core, not sp-states; detailed analysis of softness effects (ND 2019)

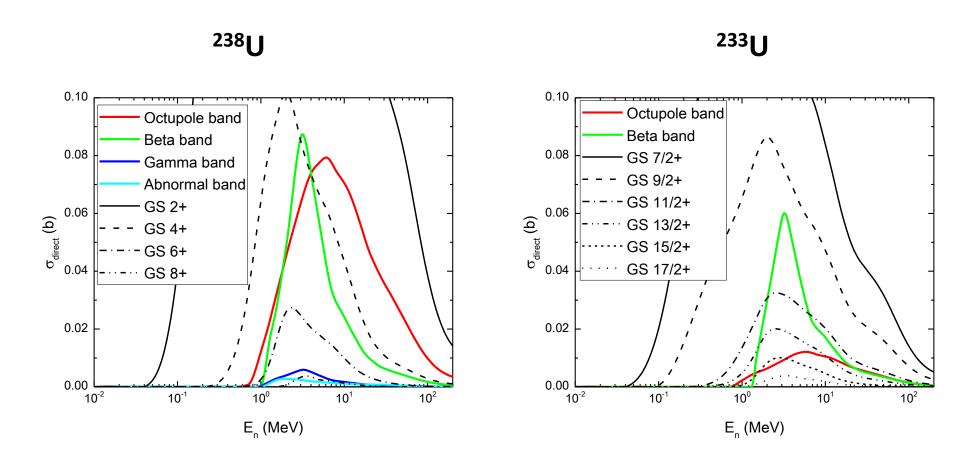
Towards other odd-A actinides

How to evaluate many important nuclides with no identified bands built on **only** vibrational excitation of the core (e.g. ²³⁵U)?

- Make calculation with only GS band levels coupled, but using soft model – results should be more reliable than for rigid rotor (primary calculations are done for ²³⁵U and ²³⁹Pu)
- Use more sophisticated nuclear structure models to identify corresponding states
- Construct these states using evaluations of the core (corresponding even-even nucleus) excitations and correct level/spin sequence for an odd-A nuclide

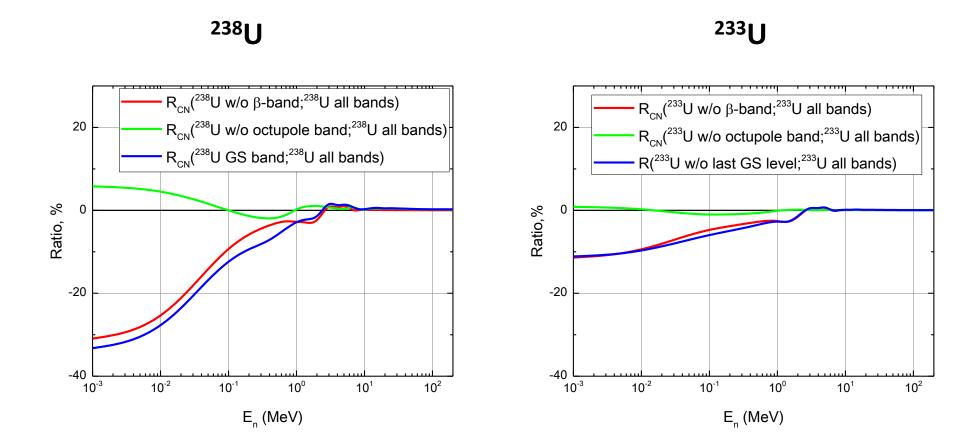
Multiband coupling 1: Direct level excitation XS

Other bands' impact is comparable to one from 2nd/3rd excited GS band level



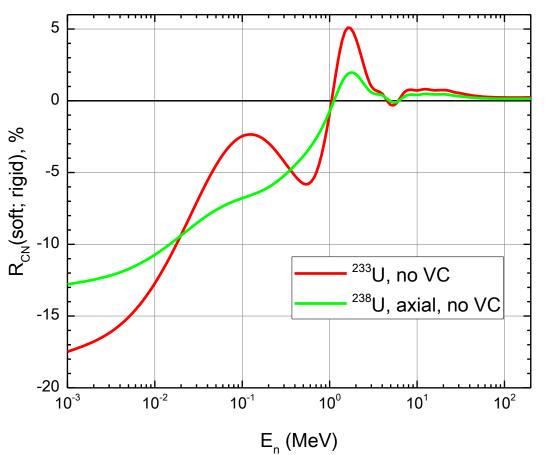
Multiband coupling 2: CN XS change due to bands removal

Large impact of β -vibrational states in the coupling scheme



Nucleus stretching: CN XS change

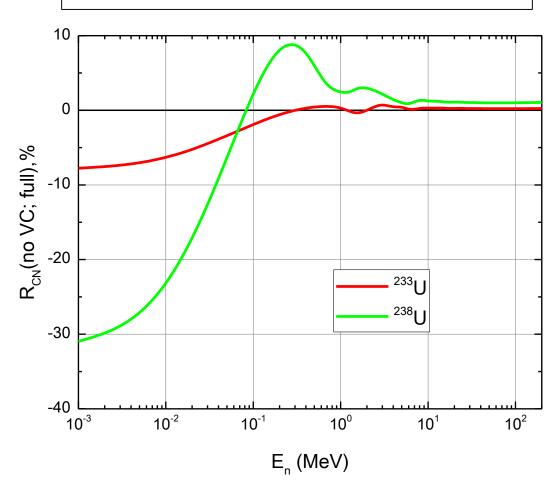
Nucleus stretching gives large impact even then only GS-band levels are coupled



Only GS band is coupled here, no non-axiality or volume conservation is accounted

Volume conservation: CN XS change

Volume conservation effect is also important but static deformations also contribute here



Optical potential

$$V(r,R(\theta,\varphi),E) = V_{HF}(E)f_{WS}(r,R_{HF}(\theta,\varphi)) \qquad \text{Main real part}$$

$$-[\Delta V_v(E) + iW_v(E)]f_{WS}(r,R_v(\theta,\varphi)) \qquad \text{Volume}$$

$$-[\Delta V_s(E) + iW_s(E)]g_{WS}(r,R_s(\theta,\varphi)) \qquad \text{Surface}$$

$$+V_{Coul}(r,R_c(\theta,\varphi)) \qquad \text{Coulomb}$$

$$+\left(\frac{\hbar}{m_\pi c}\right)^2[V_{So}(E) + \Delta V_{So}(E) + iW_{So}(E)] \qquad \text{Spin-orbit}$$

$$\times \frac{1}{r}\frac{d}{dr}f_{WS}(r,R_{So})(\hat{\boldsymbol{l}}\cdot\hat{\boldsymbol{\sigma}}) \qquad \text{Spin-orbit}$$

$$f_{WS}(r,R) = \frac{1}{1 + \exp\left(\frac{r - R}{a}\right)}$$

Coulomb correction (allows Lane consistency):

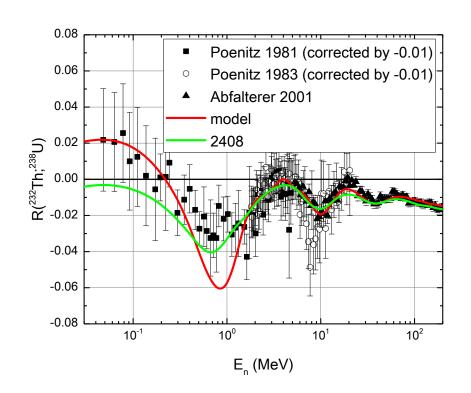
$$E = E_{inc} - E_{coul}$$

OMP figure of merit: symmetrized total XS ratio for different nuclei

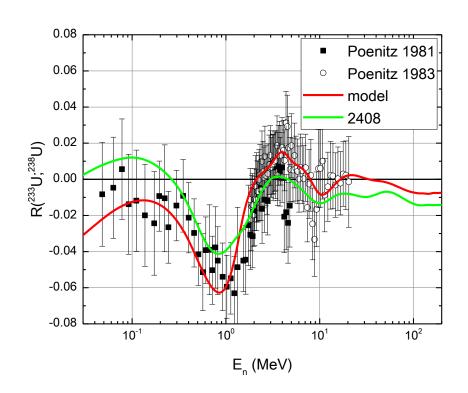
$$R(A,B) = \frac{1}{2} \frac{\sigma_A - \sigma_B}{\sigma_A + \sigma_B}$$

Many other data is fitted: total XS, (in)elastic angular distributions, (p,n), strength functions and scattering radii

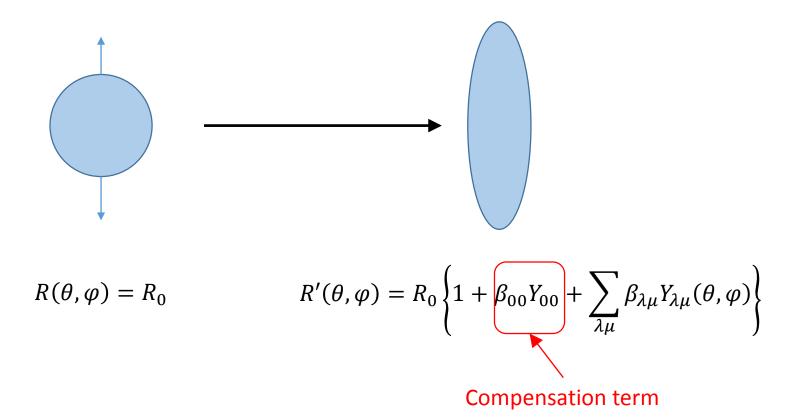
²³²Th to ²³⁸U



²³³U to ²³⁸U



Volume conservation term



Incompressible nuclear matter: V = V'

