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Outline

* Model overview
 Dispersive Lane-consistent multiband coupled channels
optical model for soft deformed nuclides
* Optical potential building routine

* Results
e 239py and 233U (multiband, many data to fit)
e 235 and 23°MU (isomeric state)
* Pu241 (scarce experimental data)



Model feature 1: Dispersive
relation

Casuality - Kramers—Kronig relations:

* Energy-dependent imaginary part of the potential
yields additional (polarizatiog\o) term to the real part:

1 W(E")
AV(E) = —P fE,_EdE

—CO
* Physically realistic and constraint energy dependence of
the potential

* Used energy dependence allows analytical expressions
for AV(E)

* Result - better constrained model!



Model feature 2: Lane consistency

Isospin-symmetric form of optical potential (only
nuclear part without Coulomb):

N—-Z
¢ Vpp — VO + UVl’
N—-Z

* Vn =VO_HVl
N—Z
'Vpn — A V1

Allows same parameterization for direct neutron,
proton scattering and (p,n)-reactions



Model feature 3:
Extended coupling for
soft deformed targets



Optical model for soft deformed nuclei

Conventional OMP

/ V(r.RE" ¢)) \

Soft spherical nucleus Rigid deformed nucleus

(vibrational excitations) (rotational excitations)
Taylor expansion near sphere Static multipolar expansion
Explicit deformations = vibrations Good convergence for big static deformations
bad convergence for big deformations no explicit deformations - no vibrations!

But actinides are both considerably deformed in GS and soft for vibrations




Solution: Taylor expansion near axial

static form

Near
sphere

B2 = B0 + 6P
(6620, (B20¥ ) {P3), {Bog) K Pao

0

Near axially
deformed




Potential expansion near axially
deformed shape

V(r,R(',¢"))

~V(r,R*7°(8") + o d zV (R, 9))

SR(0',¢'; 68,7, B3)
Rzero(el)

E/(r Rzero(g" >)} @0221 SR(0',¢'; 5B, /%)}

Rzero(el) = Ry; {1 + z ,BAOYAO(H’)}

Rigid rotor Softness 1=2,4,6

T
Vz(r) = 27'[] V(T', RZETO(Q’))YZO(Q’) sin 9, dH,
0

E.S. Soukhovitskif et al, PRC 94 (2016) 64605




Coupled channels matrix elements

(i|v(r, 6, o)If)
1 r

= > ) Agagr
K K’

1
+ v (1) {l[ﬁz]eff + [Yzo]eff] (IK||D3 ||I'K)A (lﬂ: U'j'l';2] E) KK’

1
Z vi(1r) IK||D’1 ||I K) (ljl; l']”'ﬂ]g) Oxk' «— Rigid rotor
1=0,2,4,..

<+ B-and y-vibrations
and stretching

1 \ _ :
+ [Balerr(IK[|D3||1'K)A (ljl;l'j’l';SJE)aKK, K = 2 band coupling

+ [ﬁO]eff5KK’5II’5 15ul}} \ OCtUpOle Coupling

(negative parity band)

1
+ [V22]e7/(IK||D3 + D2, ||I'K)A (ljl;zrjr1r;2]§>

Volume conservation correction



Effective deformations

B2lerr = (ma (82| 222 |y 82) Balers = (miB)| B2 |y (69)
aolers = (@] cosy =1l @) ooy = <ni<y>\ = \nf<y>>
2 Y . ,32 2 Y . 133
[lgz]eff nz(ﬁz) ,8 nf(lgz) [,BB]eff nl(ﬁ3) ,B nf(ﬁB)
20 20
Bolers = =22 [21Baess + (B1egs + [B3ers]
Oleff Van 2] eff 2leff 3leff

Effective deformations are defined by collective nuclear wavefunctions
Soft rotator model (nuclear structure) is needed here!




Towards odd nuclides

We have soft-rotator model for even-even actinides, but

no appropriate nuclear model (describing softness) for
odd-A ones...

* Nuclear softness — collective effect, determined mainly
by the even-even core, and varies smoothly from
nucleus to nucleus

* (VoaalBlW¥oaa) = (Weorel BlWcore?

* We may try to couple levels for bands built on single-
particle state same as in GS

* We need to build appropriate core “states” (spin)



Major implications of extended
couplings

* Saturated coupling (at least for even-even nuclides)

* Multiband coupling (for bands, corresponding to collective
excitations) 2 impact comparable to one from 2" or 37
levels from main rotational band

* Nucleus stretching due to rotation (centrifugal forces) >
alter predictions even when only levels from main rotational
band are coupled

e Additional monopole couplinlg due to account of volume
conservation in vibrating nucleus = additional changes of
predicted cross sections



Regional potential for actinides:
calculation algorithm

Levels’ energies/spins/parities
of even-even nuclide or

equivalent core of odd-A nuclide

Soft rotor nuclear model SRM parameters

2381 and 232Th
exp. scattering data
and coupling scheme

Effective deformations

OMP parameters

and nuclear
deformations

T~

Coupled channels optical model

Other actinide’s
exp. scattering data
and coupling scheme

Optical
model
predictions

Nuclear
deformations

/'




Fitting parameters

* Nuclear softness and non-axiality (all soft-rotator model
parameters) — from level structure, missing levels for
coupling can be restored for even-even

* Many experimental data for optical model (**3U and #3Th)
— fit optical potential parameters and deformations

 Scarce experimental data (*33U, 23°Pu...) — fit only
deformations (f-¢, P30, Pa, fg) With fixed potential

* Only strength functions or nothing available ﬁz“Pu...) — take
deformations from global nuclear mass models, no
additional fitting or only [, fit to reproduce SF

WS4 deformations work better than FRDM2012 for even-
even actinides!




Coupling scheme
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Comparison with other potentials

CN XS changes up to 0.3 barn between models fitted to the same data
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239Py: direct level excitation

Other bands’ impact is comparable to one from 2"d/3rd excited GS band level
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1.6

1.4 4

235U and %3°™U: change of CN
Cross section

Only one band coupled for 23>U but softness is still important
Isomeric state has other coupled levels = cross section changed
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241py: total CS

We fit only [, to reproduce S, value, but scarce URR total CS is fairly reproduced
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Summary

* Dispersive Lane-consistent coupled channels optical
model with extended couplings is described

e Softness and multiband coupling are important to
reach accurate calculations results for both even-
even and odd-A nuclides

e Suggested method to calculate optical model
predictions for odd-A, poorly investigated nuclei or

isomeric states is demonstrated on 233:235.235m{J gnd
239,241Pu



Thank you for your
attention!



Backup slides



Software

All calculations performed by two FORTRAN codes which have been being
developed by E. Soukhovitskii and coworkers for many years:

» optical model code OPTMAN (optical potential fitting, cross-section

calculations) with dispersive corrections as discussed with Quesada, Capote,
Chiba et al.

* nuclear structure code SHEMMAN (soft-rotator model parameters fitting and
levels prediction)

OPTMAN

* recommended to use for SRM potentials compiled in the IAEA reference input
parameter library (RIPL-3) for nuclear data evaluation

e used with the EMPIRE nuclear reaction model code for basic research and
nuclear data evaluation (e.g. recent Fe-56 CIELO evaluation)

RIPL-3: Capote, R. et al., Nucl. Data Sheets 110, 3107-3214 (2009)

OPTMAN and SHEMMAN: E. Sh. Sukhovitski et al., JAERI-Data/Code 2005-002 (2005)
Dispersive corrections: Soukhovitski, E. Sh. et al, JAEA-Data/Code--2008-025 (2008)
Soft description of Fe56: W. Sun et al, Nucl. Data Sheets 118, 191-194 (2014)




Core states assighnment (%33U states

from ENSDF)
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s softness important?

GS band levels energies deviate from rigid rotor level sequence for high
spins due to nuclear stretching form centrifugal forces.

Soft-rotor model describes experimental energies and other bands as well.
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Are other bands important?

No nucleon scattering data for other-than-GS band in EXFOR for actinides

but there are clear evidences of levels from
other bands in some proton inelastic scattering

experimental works

— ’
E.=26 MeV 238U(p,p’)
IOI_L'_ [.)+ S - —
I.-'\
1, 0.0a5
w2
103} | |] 8-=90°
|
!
| | 0'41:;8 1. 103
| n 0.731 1.061 1288
2102 byt 0.309 0520  7.° > | '159 5™ |
g [’ e 8 3 3
8 Lo 0998 | % |
L 5 ©.825 3~ .n-° Y1375
P 106207 ;5= el
10"} 1 ‘0470 ‘
T
. f -
10° R ) |
600 700 800 900 1000 1100 1200

Channel number

L. F. Hansen et al, PRC 25 (1982) 189

EP=35.M.EV '

600
400

200

w

el

C

=

O

o
300 04 2 3 elob—SO
200 Xl/lg

100+

0'0 055 0 1S
Excitation Energy (MeV)

C. H. King et al, PRC 20 (1979) 2084




Approaches to effective deformations

Effective deformations as Direct calculation
fitting parameters

* Rough model to keep minimal  « Nuclear structure model for

number of parameters, only soft deformed nuclei is

multiband coupling accounted needed

(rigid rotor coupling within _

each band) * More consistent result
* Ambiguous description for * Gives all model effects

nuclides with poor
experimental data

* No additional knowledge
needed For even-even nuclides using SRM:

E.S. Soukhovitskii et al, PRC 94 (2016) 64605 | | D. Martyanov et al, EPJ Web Conf. 146

(2017) 12031 (ND2016)




Recent dispersive OMP development

Dispersive Lane-consistent OMP for deformed nuclei
(actinides):

e 2008 — rigid rotor regional potential (RIPL 2408)

e 2015 — parametric multiband coupling, rigid intra-band
coupling; good description of even-even, but only sp-
excitations were used for odd-A nuclides (PRC 2016)

e 2016 — soft rotor description of even-even nuclei (ND 2016)

* 2019 — approach to soft odd-A nuclides: collective excitation
of the core, not sp-states; detailed analysis of softness
effects (ND 2019)



Towards other odd-A actinides

How to evaluate many important nuclides with no identified
bands built on only vibrational excitation of the core (e.g. 23°U)?

* Make calculation with only GS band levels coupled, but using
soft model — results should be more reliable than for rigid
rotor (primary calculations are done for 23>U and 23°Pu)

* Use more sophisticated nuclear structure models to identify
corresponding states

* Construct these states using evaluations of the core
(corresponding even-even nucleus) excitations and correct
level/spin sequence for an odd-A nuclide



Multiband coupling 1:
Direct level excitation XS

Other bands’ impact is comparable to one from 2"4/3"d excited GS band level
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Multibanc
CN XS cha

Ratio, %

-40

coupling 2:
nge due to bands removal

Large impact of -vibrational states in the coupling scheme
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Nucleus stretching: CN XS change

Nucleus stretching gives large impact even then only GS-band levels are coupled
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Volume conservation: CN XS change

Volume conservation effect is also important
but static deformations also contribute here
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Optical potential

Radial profile

Energy and other

Main real part

Volume

Surface

+ VCoul(r; R, (9; (P)) Coulomb

+< " ) [Vig (E) + AV 3o () + iWio ()]
mgc Spin-orbit

X ;Efws(r Rso)(l 0')

Coulomb correction

fus(r, R) = 1 (allows Lane consistency):

r—R
1+exp( a ) E =Einc — Ecoul




OMP figure o
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Volume conservation term

Q .

R(8,9) =Ry R'(68,9) = Ry {1 + + ZIBAMYM(@; <P)}
Ap

Compensation term

Incompressible nuclear matter: V =V’ — Boo = _Zﬁ




