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Problems and unexpected features in SD nuclei

» Spin Assignments of SDRB s

» Behavior of the dynamic and kinematic moments of inertia for
different bands and rational frequency

» The phenomenon of the staggering like (AI=1),
(Al = 2), staggering energy
» The phenomena of identical bands (IB's) in ND,SD bands.
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How PRACTICAL WE CAN PREDICT THE SHAPE OF THE NUCLEUS

Tests To Predict Shape of the Nucleus
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Deformation Parameter which measure Deformation from Sphere
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Normal deformed (ND) bands with deformation § ~ 0.3 (axis ratio 1.3:1:1) and
superdeformed (SD) bands with deformation  ~ 0.6 (axis ratio 2:1:1) ‘




How Can We Theoretical Predict The Shape of the Nucleus

In (ND) bands, Spins and State excitation energies are known,

In (SD) bands y-ray transition energies are the only information available. The spins and
excitation energies are not determined because of the non observation of the transition
energies linking the (SD) states and the normal deformed states.

Phase Transition

Isotopic series of some nucleil show different phase transitions
The phase transition can be investigated using different methods

Tests To Predict Phase Transitions In Series Of
Isotopes Of Some Elements
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The nuclear shape : spectrum ?

Spherical nuclei «vibrational» spectﬁllum
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Why We Need the Model?

To describe and predict nuclear shapes and properties associated with
the structure.

|
Nuclear Shape Models
|
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Nuclear models




« The moments of Inertia

which are related to the first (kinematic) and second (dynamic)
order derivatives of the excitation energy with respect to the spin.

The kinematic moments of inertia J.
Jo C dE (1)
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Experimentally

* The rotational frequency ho is
ho(l)=5[E U +2)+E _ (1)]

The moments of inertia, which are related to the first and second order

derivatives of the excitation energy with respect to the spin.

The first order derivative is the kinematic moments of inertia J®

21 —1
J P )=
E ()
The second order derivative is the dynamic moment of inertia J©
IDU)= 4

EJd +2—E )
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oStaggering

A regular Al = 2 staggering pattern of the transition energies
was observed It manifests itself in systematic shifts of
energy levels which are alternately pushed up and down
with respect to rotational sequence.

Where the behavior of AI = 1 staggering Is shown In two
different bands in signature partner pairs.
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Al = 1 STAGGERING

The behavior of Al = 1 staggering In signature partner pairs, one
may calculate the differences between the average transition | +
2 — | — | - 2 energies Iin one band and the transition | +1 — | -
1 energies In Its signature partner

SE)=2{3[E, (1 +2>1)+E (I >1-2)]-E (1 +1>1-1) }
=1[E (1 +2)-2E (I +D)+E (1)]

The EGOS staggering function. It represents the gamma
transition energy over the spin ExI)

EGOS(I) =
: @




To show the staggering phenomenon the three functions have been calculated and illustrated

E’}rl (I)

EGos (I) = o7

e(I) = (EGOS1) - (24 + 4BI%).

A%E, (1) = % [E,,(I +2) —2E,,(I + 1) + E,,(I)]
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Nature of cross-talk transitions and AI =1 energy staggering in signature

partners of odd mass SD nuclei
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Fig. 3. Staggering functions (1), e(I) and A®E, (1) as a function of the spin I for the sigature
partner pair '*'Hg(SD2,8D3).
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APPEARANCE OF AI=1 STAGGERING EFFECTS IN SIGNATURE PARTNERS OF

ODD SD T1 AND Pb NUCLEI
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Fig. 3. The calculated staggering function Y (I) . S(I) and EGOS((I)) versus nuclear spin I for the
studied signature partner ST bands observed inn T1 and Pb nucles.




Al =2 STAGGERING

Band sequence Is split into two branches separated by Al = 4 shift up
and down in energy (bifurcation), spin I, 1+4, 1+8, Is displaced
from the sequence 1+2, 1+6, 1+10

The finite difference approximation to the fourth order derivative of
transition energies Is calculated and denoting as staggering
quantity Al = 2 staggering (five-point formula)

A*Ey (1) = ﬁ IEy (1-4) - 4 Ey (1-2) + 6 Ey (1) - 4 Ey (1 +2)

+Ey (1+4)]




THE A I = 2 ENERGY STAGGERING

(1) = %[E},(i +2) - Ey(1)]
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Extended Exponential Model with Pairing Attenuation and Investigation of Energy
Staggering and Identical Bands Effects in SD Thallium Nuclei
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Description of SD Bands of the Isotones N =113 for Nuclear Mass Region A ~ 190
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|dentical Bands

The 1dentical bands(IB's) or twin bands in SD bands, bands with
nearly identical transition energies and identical dynamical

moment of Inertia In neighboring nuclel with different mass
number.

The difference In y-ray transition energies AEy was found to be only
1-3 Kev.

In order to determine whether a pair of SD bands is identical or not,

one must compare the y-ray transition energies or the dynamical
moment of inertia.




We see that both J® and J@ of the two bands in the two isotopes are
almost 1dentical, and thus their y- transition energies are equal.
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Abstract

Theoretical nuclear study of the even-even Plutonium Isotopes 238-244py was carried out. The positive-
parity rotational state band was calculated in the framework of the interacting Boson model-1 (IBM-1) and
modified soft rotor formula (MSRF), while the negative-parity band was calculated in the framework of the
new modified negative-parity formula (NMF). Furthermore, the energy levels for the - and y-vibrational
energy bands were calculated. The odd-even staggering effect between the ground and octupole bands,
which is a function of spin, was analyzed. The intrinsic coherent state was used to find the potential energy
surfaces (PES). In addition, electric transition probabilities B (E1), B (E2), and B (E3) for these isotopes
were calculated. The results obtained by applying the IBM-1, MSRF, and the NMF were inferred to be in
good agreement with the corresponding experimental data for most of the nuclear states.
® 2020 Elsevier B.V. All rights reserved.

Keywords: Theoretical nuclear study; Interacting boson model-1; Potential energy surfaces; Staggering effect

1. Introduction

Nuclear properties of heavy nuclei show a wide variety of collective phenomena such as ro-
tational energy bands, 8- and y -vibrational energy bands, electric transition probability B (E2),
and odd-even staggering. These collective effects are described in several frameworks.
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Recent Studies

H.S. El-Gendy Nuclear Physics A 1006 (2021) 122117

Bohr and Mottelson (BM) [ 1] gave the simplest well-known expression describing the ground-
state rotational bands. A major drawback of this expression is the rapid increase of the nuclear
moments of inertia as a function of the nuclear deformation. Moreover, several different factors
aggravate the simple structure of the rotational spectrum, which makes it deviate from the exper-
imental data, such as the presence of Coriolis coupling, centrifugal stretching, and antipairing.
Therefore, huge numbers of endeavors have been undertaken to generate a simple expression for
rotational energy [2-9]. Brentano et al. [10] obtained one of these interesting expressions called
soft rotor formula (SRF), which applies to all collective even-even nuclei, and gives suitable
fitting data up to known highest Yrast spins.

Algebraic models of the nuclear structure have been quite successful to describe the nuclear
properties. Recently, for instance, the interacting boson model (IBM) [11] has been strongly ef-
fective in giving a phenomenological depiction of spectroscopic information over a wide scope of
nuclei indicating collective structures. Based on the Hilbert space, the IBM Hamiltonian carries
an irreducible representation of the group U(6) of three dynamical symmetries corresponding to
different geometrical shapes, as the U (5) vibrator chain and two other possibilities, namely the
axially symmetric deformed rotor SU(3) and the y-unstable model O(6) [12-17]. Furthermore,
only a few nuclei can be regarded as these three dynamical symmetries, while most nuclei may
have treated as transitional nuclei in terms of a symmetry triangle [18].

In even nuclei, there exist octupole deformation in the ground state band, which contains
energy levels I™ =0%,2% 4% . which is joined to a negative parity band containing energy
levels with /™ =17,37,57,.... After the first few values of angular momentum I the two
bands become interlaced, forming a single octupole band with levels characterized by I™ =
0%,17,2%,37,47, ... The odd levels do not lie at the energies predicted but all of them lie
systematically above or all of them lie systematically below the predicted energies. This is a case
of odd-even staggering or Al =1 staggering [19].

Recently, several experimental and theoretical investigations of the nuclear structure have
been conducted [20-26]. H. S. Elgendy [27] investigated some nuclear structures of the Ytter-
bium isotopes l6'6‘”6Yb, wherein, modified soft rotor formulas (MSRF) were used to calculate
rotational bands. Moreover, the correction formula for the BM-formulas (CBMFs) was used to
calculate the §- and y-vibrational energy bands. In addition, Doma and Elgendy [28-30] dis-
cussed some nuclear phenomenological study as Spectra, potential energy surface (PES), and
electromagnetic transitions for some even-even nuclei.

Moreover, A. M. Khalaf et al. [31] calculated the odd-even staggering effect in Thorium iso-
topes within the framework of the interacting vector Boson model. Also, A. M. Khalaf et al.
[32] considered the phase transition of even—even ruthenium isotopic chain within the dynamical
symmetry y-unstable model O(6) of interacting boson model with the three-body quadrupole
interaction. Furthermore, Al-Jubbori et al. [33] introduced a new empirical formula that calcu-
lated rotational bands for even—even rare-earth Er — O's isotopes for N = 102 and discussed the
properties of gamma, beta Yrast band. Moreover, the potential energy surface and reduced tran-
sition probabilities B(E2) have been also calculated for these rare-earth isotopes. The authors
concluded that the '""Er, '"2¥b, '7*Hf, and '"®W nuclei show a rotational dynamical symmetry
SU(3) and '7#0s shows dynamical symmetry X (5).

The aim of this paper is to consider some nuclear features of the Plutonium isotopes
238'244Pu, wherein we study the rotational bands in the framework of nuclear softness formula
(NSF) [6,34], modified soft rotor formulas (MSRF), and (IBM). Furthermore, we introduce a
New modified negative-parity formula (NMF) through which the negative-parity band has been
calculated. We will also calculate the - and y-vibrational energy bands in the framework of
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Abstract

The interacting sdf-boson-approximation model is adopted to describe the low-lying positive and neg-
ative parity states in even-even 158-168 ¢ isotopes. The negative parity states are described using the
sdf-IBM model by adding the L =3 f-bosons nucleon pairs to the standard sd-boson model space. To
determine the deformation of the nuclear structure of these isotopes the potential energy surfaces are calcu-
lated as functions of the deformation parameters. The reduced transition probabilities B(E2) in N = 94 are
compared to the critical point symmetry X(5) predictions. In this chain, the sdf-boson interacting param-
eters are investigated and plotted against a number of neutrons. The shape phase transition from spherical
158 to well-deformed '8 Hf nucle is observed.
© 2020 Elsevier B.V. All rights reserved.
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abilities were given in the X(5) and }'({5}-,82 models. Casten and McCutchan [#] used the idea
of quantum phase transitions to study in detail the critical point symmetries X(5) and E(5). They
also made a comparison between the theoretical results and the data in some of the isotopes.

Nomura et al. [9] presented low-lying spectra for the neutron-rich Hf and Yb isotopes. They
calculated excitation energies. B(E2) ratios, and correlation energies in the ground state and ob-
served a transition from prolate to oblate ground state shapes in the chain. Within the framework
of the interacting boson model, Subber [10] described the structure of neutron-rich deformed
176.178 Hf isotopes and caleulated energy levels, monopole transitions and B(E2) ratios of these
isotopes. Sun et al. [11] studied the multi-quasiparticle and collective excitations of the 'T*Hf
isotope with an axially symmetric basis. From energy surface calculations, it is suggested that in
relation to " Hf isotope, there is significant smoothness to the axially asymmetric shapes, which
can highly adapt to the level distribution. Gupta [12] investigated the collective band structure of
Hf isotopes using IBM and the dynamic pairing plus quadrupole model (DPPQ) models. The au-
thor used the IBM-1 model to reproduce the structure evolution of %' Hf isotopes and found
out that '**Hf does correspond to the N = 94 as X(5) nuclei. Further, he predicted that "S*Hf
isotope represents a shift towards the SU(3) limit.

McCutchan et al. [13] calculated low-lying. positive parity excitations of the Z = 64 to 72,
N = 86 to 104 even-even rare-earth nuclei. In the phase transition region, larger Z values show
increased y-softness. The y-softness increases for the Yb and Hf nuclei which lie very close
to the U(5)-O{6) leg of the triangle. Wiederhold et al. [14] determined mean lifetimes of excited
states of Hf isotopes. From these lifetimes. the B(E2) transition strengths between the yrast states
and the B(E2; 4']" — 2t WB(EZ:; 2'|" — {T]"J ratios were calculated. The authors determined the
mean lifetimes of the 21" and the 37 states of IT6HF isotopes. Khalaf et al_ [15] investigated the
characteristics of energy ratios and B(E2) values of even-even '"~'*'HF isotopes. The values
are analyzed with respect to the increase in the total number of bosons and by using the coherent
state formalism.

The aims of the present study include the following:
1) To carry out a systematic sdf-IBM calculation of the energy spectra of the even-even Hf
isotopes with A = 158-168. The shape phase transition and critical-point within this Hf-chain
are of special importance as well.
2) To study the interband and intraband electric transition probabilities E1, E2 and E3. Special
attention is to be given to the alternating-parity transitions.
3) Identification of the appropriate potential energy surface values in the deformation space to
explore the role of quadrupole and octupole deformation in studying the nuclear structure.

2. The interacting boson model

Arima and Iachello [16] have suggested a nuclear model called the interacting boson model
(IBM). It is used to describe the low lying collective states in many medium to heavy even-even
nuclei. In the calculation of energy levels. the most general Hamiltonian of IBM-1 was used
[17.18]:

Hyg = g1y +ﬂ'oP+.P -I-r]'li,.f. + ﬂ"géé +a3 f}.f‘] +a4'f'4.f'4. (1)
where &4 is the d-boson energy, iig = (d*.dyis the d-boson number operator, Pi=1y20s" st —
dt.d'] s the paring operator, L = V10[d" x d1'" is the angular momentum operator, O =
[d7 x s+ 57 x dI'® — x[d" x d]*® is the quadrupole operator ( is the quadrupole parameter),
T = [d* *® d]m is the octupole operator and Ty = [d% x d']““ is the hexadecapole operator.

Please cite this article in press as: HN. Qasim, FH. Al-Khudair, Muclear shape phase transition in even-even
158168 Hf jsotopes, Nucl. Phys. A (2020), https:/idoi.orgf10.1016/j.nuclphysa. 2020121962
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of the minimum on the (f2, 1) energy surface. We suppose that the system is allowed to vibrate
with respect to the quadrupole & and octupole £ axial deformation variables [27,28]. The PES
values as function of the quadrupole and octupole deformation parameters are plotted in Fig. 14.
In this figure, the energy surfaces are symmetric around the #; = 0 axis. With the increase of
the mass number, the potential energy surfaces becomes steeper in > direction and Samin shifts
away from the origin. For "**Hf isotope, IBM PES has a pronounced sharp minimum exhibits
the SU(3) limit shape. We see that for a fixed physically typical value of #> the barrier in the
quadrupole space of #; is large. For "80.162Hf the energy surfaces maximum begins to increase
to (1.53, 1.95) MeV, respectively. And the energy surface of '®*Hf isotope is quit similar to the
deformation shape of 168 Hf isotope. An overview of the PES values as a function of the 8> and
B is given in Fig. 14. There is a quadrupole deformation in the shape of 180-188Hf jsotopes while
there is no octupole deformation in the ground state of all isotopes.

7. Conclusion

In the present paper, the low-lying spectra including the positive and negative parity bands of
even-even Hf isotopes are investigated within the framework of the sdf-IBM model. The tran-
sition between the three limit symmetries U(5) to SU(3) is observed in comparison to different
nuclear shapes. The potential energy surfaces as functions of the axial gquadrupole and the oc-
tupole deformation parameters are analyzed. A good agreement is found between the model
results and experimental data and show X(5) characters to "*®Hf nucleus. For electromagnetic
transition probabilities, future calculations will be possible if an additional or new experimental
data become available.
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Abstract: Empirical formulae of rotational spectra consisting two parameters, such as single-term energy formmula,
E = a.J® for spin .7, and ab formula, were used to study the different features of superdeformed band in A = 100150
mass region nuclei. The nuclear kinematic and dynamic moment of inertia for the ground-state rotational bands were
calculated for this purpose and both showed gradual rise with rotational frequency. The study of AF = 2 staggering
effects in the vy-ray energies, where the two sequences J = 4i.4i + 1 and J = 4i + 2, (i = 0,1,...) are bifurcated,
was also done. We also caleulated the variation of the gamma ray energies from a smooth reference using the fourth
derivative of the gamma ray energies at a given spin. The excellent agreement between the observed and calculated

transition energies are in good support of the two-parameter formula.

Key words: Superdeformed band, two parameter formula, staggering index, identical bands

1. Imntroduction

A superdeformed nucleus is a nucleus that is predicted to occeur at specific magic numbers and at deformations
corresponding to the integer ratios of the axes about 2:1:1. Generally, the normal deformation of the nucleus is
about 1.3:1:1. Superdeformed structures have been found mostly in nuclei of the A = 150 and 240 mass regions,
i.e. in the fission isomers low-spin states of elements in the actinide and lanthanide series. Recently, it has also
been discovered in other mass regions, such as A = 60,80, 130, and 190. In the past few years, much effort has
been devoted to study the underlying physics of superdeformed bands and other interesting facts and issues,
such as the identical bands [1], AT = 1,2 staggering [2, 3] and the multipole correlation and exotie structure of
nuclei [4].

A general understanding in the properties of superdeformed nuclei has been attained, but still there are
open problems that need to be further studied. In this paper, we used empirical formula of rotational spectra
consisting two parameters, i.e. single-term energy formmula, E = aJ®, and ab formula, to study the different
features of superdeformed band in A = 100-150 mass region.

The moment of inertia is one of the most significant quantities to characterize the nuclear rotational
band. There are generally two kinds of moment of inertia (5% ) for illustrating the high-spin phenomena, i.e. the

dynamic moment of inertia,

Al P E
I = = = 2| — 1
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The rotational and vibrational energies and the electric transition probability B (E£2)

of the even—even 22%-2#2 Ty, are studied irically in fi k of a nuclear
phenomenclogical approach by using the SU(3) d ical sy ies of the I

Baoson Model-1 (IBM-1). Furthermore, the potential energy surfaces for these isotopes
are plotted as functions of the def: ion 4 and . M , we introduce

empirical fit formulas for rotational and vibrational energies, which used to caleulate
these energies for the thorium isotopes. The obtained results by applying the IBM-1 and
the authors” formulas are in good with the di i al data
for most. of the nuclear states.

Keywords: Rotational encrgy; vibrational energy: electric transitions probability; inter-
acting boson model.

PACS Number(s): 23.40.—s, 21.10.Tg, 21.10.ky

1. Introduction

The Interacting Boson Model (IBM), as proposed by Arima and Iachello” has been
successful in phenomenological studies for describing low-lying, quadrupole collec-
tive states of medinm-heavy nuclei. The major assumption of IBM is to describe a
system of mutually interacting bosons; a boson can be either in an L =0 (s) or in
an L = 2 (d) state. Furthermore, since the bosons are thought of as collective states
of nucleon pairs, the total number of bosons N (s and d) is a conserved quantity.
The IBM Hamiltonian can be regarded as a general transformation acting on a
six-dimensional space, spanned by the s-boson and the five components of the d,
leaving the total number of bosons invariant. Consequently, the group structure
underlying the IBM-model is U(6). In the U(6) group, three different chains of sub-
groups can be distinguished, if one requires that the 0(3) (angular momentum) be
a subgroup. The three dynamical symmetries are labeled by the first subgroup
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of each chain, SU(3), SU(3) and O(6), respectively. The solutions for these three
limits show many similarities with three different cases in the geometrical picture 50
namely the anharmonie vibrator, the axially symmetric deformed rotor and the -
unstable model. respectively. In contrast to the geometrical picture, the three limits
in the IBM are merely special cases of a more general Hamiltonian, which can be
diagonalized numerically. The IBM can therefore provide a detailed description not
only of the limits, but also for intermediate cases.

The IBM has been frequently used in recent years for the description of the
structure of medium and heavy nuclei away from closed shells. Energy spectra,
quadrupole moments, electromagnetic transition rates, equilibriuvm shapes and
shape transitions have been studied for a large number of nuclei, and encourag-
ing agreement with the experimental data has been obtained with only a small
number of parameters that vary smoothly with mass number.

Guptaﬂ studied the capabilities of IBM-1 and gave an insight on the variation
of the nuclear structure of **7'*Ba with neutron number N. A detailed study of
the energy systematics of '*>1¥Ba and the E2 transition rates in their decay has
been done. In addition, Gupta studied the shape transition of light Xe, Ba and Ce
isotopes in comparison with the predictions of the wvarious analytical symmetries
for this region.

Moreover, Khalaf and Taha® adopted a simplified two-parameter IBM-1 Hamil-
tonian which is an intermediate Hamiltonian between the three dynamical symme-
tries of U(6), namely: the spherical U(5), the prolate and oblate deformed SU(3)
and the y-unstable (3(6) limits. The potential energy surfaces to the IBM Hamil-
tonian have been obtained in this paper by using the intrinsic state formalism
which introduces the shape wvariables 3 and 5. The Gadolininm and Rutheninm
isotopic chains have been taken as examples in illustrating the U(5) — SU(3) and
U(5) — (6) shape-phase transitions, respectively.

Furthermore, microscopic description of octupole shape-phase transitions in
light actinide and rare-earth nuclei are presented by Nomura et al. I8 where a sys-
tematic analysis of low-lying quadrupole and octupole collective states is presented
based on the microscopic energy density functional framework. By mapping the
deformation constrained self-consistent axdally symmetric mean-field energy sur-
faces onto the equivalent Hamiltonian of the sdfIBM, that is, onto the energy
expectation value in the bosoncondensate state, the Hamiltonian parameters are
determined. Their study is based on the global relativistic energy density func-
tional DD-PC1. The resulting IBM Hamiltonian is used to caleulate excitation
spectra and transition rates for the positive and negative-parity collective states
in four isotopic chain characteristics for two regions of octupole deformation and
collectivity: Th, Ra. Sm and Ba. Consistent with the empirical trend, the micro-
scopic calculations, which are based on the systematics of 3. 35 energy maps, the
resulting low-lying negative-parity bands and transition rates show evidence of a
shape transition between stable octupole deformation and octupole vibrations char-
acteristic for (Fz-soft potentials.

1850040-2
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that we have degenerated 3 and < bands, and therefore they must have the same
representation states of the same spin of these two bands.

Furthermore, we used the RMSD2H to calculate the deviation between the energy
levels of the IBM and the DG formula from the experimental results. It is shown
from Table[d that best agreement is obtained for the ground state and the 4-band
when we used the DG formula, while good agreement is occurred for the S-band
by using the IBM model.

Also, in Fig. @b} which illustrates the potential energy surface V{3, v) for the
even—even deformed ** 22T} isotopes as functions of the deformation parameters
3 and «, we found the minimum values (—2.99 MeV) for the prolate shape of the
25Th at @ = 1.3 and 4 = 0, (—2.40MeV) for the prolate shape at # = 1.3 and
5 =0 for P Th and (—2.86 MeV) for the prolate shape at 3 = 1.3 and v = 0 for
232Th In addition in Fig. [[{a) note that the deformation parameters 3 < 0 for
oblate and 3 > 0 for prolate shapedBEl o for 4 = 60°, it is oblate type and when
5 = 1), it is prolate type. We conclude from this study on PES that the prolate
deformation is deeper than the ohblate
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