Fine and superfine structures in neutron resonance positions

S.I. Sukhoruchkin, Z.N. Soroko

Petersburg Nuclear Physics Institute NRC "Kurchatov Institute"

188300 Gatchina

Parameters of fine ($\varepsilon'=1.2 \text{ keV}$) and superfine ($\varepsilon''=1.34 \text{ eV}$) structures were introduced empirically in 1972 [1] from the analysis of maxima in distribution of neutron resonance positions, nuclear excitations and binding energies of wide range of nuclei.

In some papers [1] attention was drawn to the "structure" in the spacing between neutron levels D_{ij} for some N-odd (compound) heavy nuclei. If single particle or to be more precise few-particle effects play any role in the complex spectra of levels in heavy nuclei they will first of all manifest itself in N-odd compound nuclei. These systems are thought as N-even excited core plus neutron. If the structure in D_{ij} is due to anomalously strong statistical fluctuations then, these data taken together for the large number of nuclei, will give smooth distributions. But it doesn't happen, and distinguishing effect in D_{ij} near 5.5 eV maintains even in cases in levels with relatively broad neutron widths which, as one would expect, correspond to larger contribution of single particle configurations (Fig. 1 in [1]). The distinguishing effect of the interval (5.5 eV) has also been confirmed by the analysis of the summary data on positions (E_o) of neutron resonances, e.g. distances from levels to the binding energies of neutron [2,4,5].

Figure 1: Distribution of neutron resonance positions known in 1966 year. Selection of one strongest resonance $(\max \Gamma_n^o)$ in the interval 10 eV (random probability is given in parentheses).

A large amount of information on neutron resonances of heavy nuclei with Z=90-96 allows us to perform the analysis of the levels positions and spacings to check the distinguishing character of the superfine structure parameter. There is a system of stable energy intervals that are multiples of each other [4]. The superfine structure parameter $\varepsilon''=1.34$ eV was found in spacing distribution of neutron resonances of compound nucleus ²³⁸Np: maximum at 1.1 eV. This value is close to the position of the first strong resonance at $E_n=1.321$ eV in this nucleus. The next strong resonance at $E_n=5.777$ eV is four times larger than the position of the first strong resonance and is close to the parameter 5.5 eV observed in N-even target nuclei of U: 5.98 eV ²³²U, 5.1570 eV ²³⁴U, 5.45 eV ²³⁶U [5]. The intervals 5.5 eV=4 ε'' and ε' , as well as intervals that are multiples of them, were found in many heavy nuclei as maxima in positions and spacings distributions of neutron resonances.

Nucl.	Z	\mathbf{E}_n	\mathbf{E}_n	E_n	\mathbf{E}_{n}	E_n	\mathbf{E}_n	E_n	
233 Th	90				21.819	23.470			570.25
234 Pa	91	1.341	1.644	2.830	3.386	4.288	5.152		
$^{233}\mathrm{U}$	92	5.980	12.7	20.80	23.75				
$^{234}\mathrm{U}$	92	1.452	5.805			22.20	22.61	23.06	23.69
$^{235}\mathrm{U}$	92	5.157						22.1	23.7
$^{236}\mathrm{U}$	92	5.407	11.665	12.390	15.417	16.089	16.646	19.296	23.591
$^{237}\mathrm{U}$	92	5.45							29.8
$^{238}\mathrm{U}$	92							46.2	52.4
$^{239}\mathrm{U}$	92	6.67	20.87						
^{238}Np	93	1.321	1.478	3.865	4.264	4.863	5.777		
240 Pu	94	0.296	7.826						
242 Pu	94	0.264	5.813	9.938	14.77	26.43	28.86		
$^{242}\mathrm{Am}$	95	0.3051	5.415	14.682					

Table 1: Neutron resonance energies (eV) of heavy compound nuclei. Parameter of su-perfine structure $\varepsilon'' = 1.34$ eV and parameter 5.5 eV $\approx 4 \times \varepsilon''$ are boxed.

Figure 2: *Top*: Total spacing distribution of all resonances in ²³⁸Np. *Bottom*: Spacing distribution of resonances in ²³⁸Np with $\Gamma_n^{\circ} \geq 50 \mu \text{eV}$ [6].

Recently, particle masses distributions were added [2]. Some maxima values were noticed to be in relations close to the QED radiative correction to the magnetic moment of the electron $\alpha/2\pi = 115.9 \cdot 10^{-5}$ applied to the electron mass. This value is of a fundamental character and reflects the influence of the physical condesate, vacuum [3].

$$\alpha/2\pi = 115.9 \cdot 10^{-5} = \varepsilon'' : \varepsilon' = \varepsilon' : 2m_e = m_e : M_q = m_\mu : M_Z = M_q : 3M_{H^{\circ}}.$$

In this equation (1) there are parameters of superfine and fine structures $\varepsilon''=1.34$ eV and $\varepsilon'=1.2$ keV, as well as the constituent quark mass M_q , Z boson mass M_Z and the scalar boson mass $M_{H_0}=125$ GeV.

Table 2: (from [6]) Comparison of positions and spacings in light and near-magic nuclei with integer values of the fine structure parameter $\varepsilon' = \delta'/8 = 1.188$ keV.

Nucl.	Ca-Ni	⁶¹ Ni				
l_n	$l_n=0$	D(keV)				
E_n	18.8	4.8	9.3	14.1	19.0	24.7
$k(\varepsilon')$	16	4	8	12	16	20
$k \times \varepsilon'$	19.0	4.8	9.6	14.4	19.0	24.7
Nucl.	¹⁴¹ Ce	$^{141}\mathrm{Ce}$	$^{142}\mathrm{Pr}$	$^{141}\mathrm{Ce}$	$^{141}\mathrm{Ce}$	$^{141}\mathrm{Ce}$
J_i^{π}	$1/2^+$	$1/2^{+}$	$(5/2^{-})$			
Γ_n^o, meV	660	3060	160	D	D	D
E_n	9.573	21.570	9.598	21.7	43.1	86.2
E^*, E'_n	9.505	21.418	9.530			
$k(8\varepsilon')$	1	9/4	1	9/4	9/2	9
$k \times 8\varepsilon'$	9.504	21.384	9.504	21.4	42.5	85
Nucl.	¹⁴⁰ La	$^{80}\mathrm{Br}$	$^{82}\mathrm{Br}$	86 Rb	$^{143}\mathrm{Ce}$	$J_o^{\pi} = 3/2^-$
J_i^{π}	3+	$l_n=0$	$l_n = 0$	$l_n=0$	$7/2^{-}$	$5/2^{-}$
Γ_n^o, meV	54	72.0	120	159	E^*	E^*
E_n	1.179	1.201	1.209	2.398		
E^*, E'_n	1.170	1.186	1.194	2.370	18.9	42.3
$k(8\varepsilon')$	1/8	1/8	1/8	2/8	2	9/2
$k \times 8\varepsilon'$	1.188	1.188	1.188	2.376	19.0	42.77

In Table 2, top, positions E'_n (keV) of strong neutron resonances in light and magic nuclei and periodicity in the spacing distributions in resonances ⁶¹Ni (right). At the center, values E_n (keV) in nuclei with N=83=82+1, maxima in spacing distributions ¹⁴¹Ce. At the bottom (left) positions of strong neutron resonances in isotopes with Z=35-39 are compared with the integer of the period $\varepsilon'=1.188$ keV=9.505 keV/8, found in the positions of strong resonances in Z=57-59, N=83 nuclei (center). At bottom (right), excitation energies E^* (keV) of ¹⁴³Ce are given. Boxed are values $\varepsilon'=1.188$ keV=9.505 keV/8, δ' , $2\delta'$ and $(9/4)\delta'$, see also Fig. 3 in [4].

Combined analysis of the particle mass spectra and energies of nuclear states demon-strate the universal character of the parameters $\delta = 16m_e$ and m_e [2-7], which are inter-connected with the main SM parameters (fundamental bosons, quarks and leptons).

References

1. S.I. Sukhoruchkin. Statistical Properties of Nuclei. Pl. Press, 1972, p. 215.

 S.I. Sukhoruchkin. "Electron-based Constituent Quark Model". Nucl. Part. Phys. Proc. 318 - 323 (2022) 142.

3. V. Belokurov, D. Shirkov. Theory of Particle Interactions. AIP, 1991.

4. S.I. Sukhoruchkin, Z.N. Soroko, M.S. Sukhoruchkina. "Grouping of neutron resonance positions". Proc. ISINN-29. JINR-E3-2023-58. p. 129.

5. S.I. Sukhoruchkin, Proc. Conf. Nucl. Data for Reactors, Paris, 1966. V. 1. p. 159. IAEA Vienna. 1967.

6. S.I. Sukhoruchkin, Z.N. Soroko, M.S. Sukhoruchkina. "Fundamental aspects of neu-tron spectroscopy". Proc. ISINN-28. JINR-E3-2021-48. p. 247.

7. S.I. Sukhoruchkin, Z.N. Soroko. Poster report "Fundamental Information from Com-bined Analysis of Nuclear Data and Particle Masses", this conference.