Fundamental Information from Combined Analysis of Nuclear Data and Particle

Masses

S.I. Sukhoruchkin, Z.N. Soroko

Petersburg Nuclear Physics Institute NRC "Kurchatov Institute"

188300 Gatchina

Empirical observations of the Standard Model parameters which are unexpectedly manifested simultaneously in the prominent maxima in spacing distributions of nuclear excitations [1] and stable intervals in total distribution of particle mass differences allow us to conclude that their combined analysis demonstrate the universal character of the parameters $\delta = 16m_e$ and m_e .

Table 1: Comparison of the number of fermions in the central field (top line, N^{ferm}) with numbers N in a representation $N \cdot \delta$ of masses m_{μ} , f_{π} , $m_{\pi^{\pm}}$, ΔM_{Δ} and ratios m_e/M_q , m_{μ}/M_Z , $f_{\pi}/(2/3)m_t$, $\Delta M_{\Delta}/M_{H^0}$.

$ \begin{array}{l} N^{ferm} 16 \\ N(\delta) N = 1 \end{array} $	16·13-1=L 13	$\begin{array}{c} 16.16 \\ 16 \end{array}$	16.17+1 17	$\begin{array}{c} 16.18\\ 18 \end{array}$
Part. δ	m_{μ}	f_{π}	$m_{\pi^{\pm}}$	ΔM_{Δ}
Value in MeV	106.0	130	140	147
Ratio. m_e/M_a	m_{μ}/M_Z	f_{π}/M'_{H}		$\Delta M_{\Delta}/M_{H^0}$
Value $\alpha/2\pi$	$115.87 \cdot 10^{-5}$	$114 \cdot 10^{-5}$		$117 \cdot 10^{-5}$
Comm.	hole in $1p$	filled shells	valence	
\mathbf{ECQM}	1	$M^{\omega}_{q}=3f_{\pi}$		$M_q = 3\Delta M_\Delta$

In Table 1 numbers of fermions in the central field (top, N_{ferm}) are compared with numbers N in a representation $N \cdot \delta$ of the masses m_{μ} , f_{π} , $m_{\pi^{\pm}}$, ΔM_{Δ} and ratios m_e/M_q , m_{μ}/M_Z , $f_{\pi}/(2/3)m_t$, $\Delta M_{\Delta}/M_{H^0}$. Boxed are hole configuration in 1*p* shell ($1s_{1/2}^4$, $1p_{3/2}^8$, $1p^{1/2}$) and valence configuration over the shells $1s_4^{1/2}$, $1p_8^{3/2}$, $1p_4^{1/2}$ (n=N in Table 3, center).

Table 2: Particle masses (in MeV) of different generations (families).

Particle	Lepton	Mass	$\begin{array}{c} \text{Quark} \\ \text{Q=}2/3 \end{array}$	Mass	Quark $Q=-1/3$	Mass
1 fam.	e	0.511	u-quark	2.16(49)	d	4.67(48)
		m_e	$(3m_e)$	(1.53) [6]	$9m_e$	4.60
$2~{\rm fam}.$	μ	105.658	с	1270(20)	s	93(11)
			$9m_{\pi}$	1256		
3 fam.	au	1776.86(12)	t	172900	b	4180(30)
$2m_{\mu}+4M$	$\frac{\omega}{q}$	1776.62(24)			$9M_q =$	3959
$2m_{\mu} + 192$	δ	1781,108				
$2m_{K^*}$		1783.52(150)				

Table 3: Representation [2] of particle masses (3 top sections) and nuclear data (bottom) by the expression $n \cdot 16m_e(\alpha/2\pi)^X M$ with QED correction to the mass $\alpha/2\pi$, where X is the degree and M is the factor. Boxed values m_μ , M_Z , M_{H° , δ° , δ , δ' , δ'' and $\Delta M_\Delta = m_s$, $m_e/3$ are considered in [2]. Double boxed are the constituent quark masses. Intervals in nuclear binding energies (X=0) and fine structure in nuclear states are considered elsewhere.

Х	М	n = 1	n = 13	n = 16	n = 17	n = 18
-1 GeV	3/21	$16M_q = \delta^\circ$	M _Z =91.2	$m_t = 173.2$ $M'_H = 115$		$M_{\mathrm{H}^{\circ}} = 125$
0 MeV	$egin{array}{c} 1 \\ 1 \\ 2 \end{array}$	$16m_e = 2m_d - 2m_e$ ΔE_B	$m_{\mu} = 106$ 106 212	$f_{\pi} = 130.7$ 130 262	${ m m}_{\pi}, \Lambda_{QCD}$ 140	$\begin{array}{r} \ \Delta M_{\Delta} = 147 \\ 147 \\ 296 \end{array}$
	3 4 6	NRCQM Radial excit.		$\boxed{\mathbf{M}_{\mathbf{q}}^{\omega}=391}$ $m_{\omega}=782$	$(b\tilde{b}) = 563.0$	$ \boxed{ M_q = 441 } (c\tilde{c}) = 589.1 2M_a = 882 $
	9 10 12 60 64	$m_{\Lambda} = 19m_{\pi}$ $m_{\Omega} = 12m_{\pi}$ Fig. 7 [3] $m_{\ell}(1S) \Upsilon(1S)$			$m_c = 1270(20)$ 1390-1407 1671-1688	8848 9399-9460
1 keV	$ 1 8,8 \cdot 4 $	$16m_e = \delta = 8\varepsilon_{\circ}$ CODATA	3936	$\delta m_N = 1293.3$	$k\delta$ -m _n -m _e =161.651	$170 = m_e/3$
$\begin{array}{c} 1 \\ \mathrm{keV} \\ 2 \\ \mathrm{eV} \end{array}$	$1\\2\\1,4\\4,8$	9.5= $\delta'=8\varepsilon'$ 11= $\delta''=8\varepsilon''$	$123 \\ 247 (^{91}\text{Zr}) \\ 143 (\text{As}) \\ 570 (\text{Sb})$	152	$\Delta^{TF} = 161$ 322 (³³ S) 749 (Br, Sb) 1500 (Sb, Pd)	170 (Sn) $340 (^{100}Mo)$ Neutron reson.

No	No	${ m mass}$ ${ m MeV}$	uncert. MeV	part.	prop.	Comm.	No	No	${ m mass} { m MeV}$	uncert. MeV	part.	prop.	Comm.
1		leptons						05	1007		(1070)	0 = 10	>
	1	0.51099895	5	e	1,	/2		25	1667	4	$\omega_3(1670)$	0 (3)
	2	105.658375	5	μ	1,	/2		26	1670.6	2.9	$\pi_2(1670)$	$1^{-}(2$	-+)
	3	1776.86	0.12	au	1,	/2		27	1688.8	2.1	$ \rho_3(1690) $	$1^{+}(3$)
2		light	unflavored	mesons				28	1704	12	$f_0(1710)$	$0^+(0$	++)
	4	134.9768	0.0005	π°	$1^{-}(0)$)-+)		29	1810	9	$\pi(1800)$	$1^{-}(0$	-+)
	5	139.57039	0.00018	π^{\pm}	1-((0^{-})		30	1854	7	$\phi_3(1850)$	$0^{-}(3$)
	6	547.862	0.017	η	$0^{+}(0)$)-+)		31	1842	8	$\eta_2(1870)$	$0^{+}(2$	-+)
	7	775.26	0.23	$\rho(770)$	$1^{+}(1$	L)		32	1936	12	$f_2(1950)$	$0^+(2$	++)
	8	782.66	0.13	$\omega(782)$	$0^{-}(1$	l)		33	1967	16	$a_4(1970)$	$1^{-}(4$	++)
	9	957.78	0.06	$\eta'(958)$	$0^{+}(0)$)^+)		34	2018	11	$f_4(2050)$	$0^+(4)$	++)
	10	1019.461	0.016	$\phi(1020)$	$0^{-}(1$	L)		35	2162	7	$\phi(2170)$	$0^{-}(1$)
	11	1166	6	$h_1(1170)$	$) 0^{-}(1)$	L ⁺⁻)	3		strange	mesons			
	12	1229.5	3.2	$b_1(1235)$	$1^{+}(1$	l+-)		36	493.677	0.016	K^{\pm}	1/2((-0)
	13	1275.5	0.8	$f_2(1270)$	$0^{+}(2$	$2^{++})$		37	497.611	0.013	K°	1/2((-0)
	14	1281.9	0.5	$f_1(1285)$	$0^{+}(1$	l ⁺⁺)		38	891.67	0.26	$K^{*}(892)^{*\pm}$	= 1/2(1^{-1}
	15	1294	4	$\eta(1295)$	$0^{+}(0$)-+)		39	895.55	0.20	K*(892)**	1/20	1^{-1}
	16	1318.2	0.6	$a_2(1320)$	$1^{-}(2$	$2^{++})$		40	1253	7	$K_1(1270)$	1/2((1+)
	17	1408.8	2.0	$\eta(1405)$	$0^{+}(0$)-+)		41	1403	7	$K_1(1400)$	1/2((1+)
	18	1416	8	$h_1(1415)$	$) 0^{-}(1)$	L+-)		42	1414	15	$K^*(1410)$	1/2((1-)
	19	1426.3	0.9	$f_1(1420)$	$0^{+}(1$	L++)		12	1497.3	15	$K^*(1430)^{\pm}$	= 1/2((2+)
	20	1475	4	$\eta(1475)$	0+(0)-+)		40	1427.5	1.0	$K_2(1430)$ $K^*(1430)$	$\frac{1}{2}(2)$	(2^{+})
	21	1506	6	$f_0(1500)$	$0^+(0)$)++)		44	1432.4 1772	2.5	$K_2(1430)$ $K_2(1770)$	1/2($\frac{2}{2}$
	22	1517.4	2.5	$f_2'(1525)$	$0^{+}(2$	2++)		40	1770	0	$K_{2}(1770)$ $K_{2}(1770)$	1/2($\frac{2}{2-}$
	23	1661	11	$\pi_1(1600)$	1-(1	L-+)		40	1779	8	$\Lambda_3(1(80))$	1/2(3)
	24	1617	5	$\eta_2(1645)$	$0^{+}(2$	$2^{-+})$							

 Table 4.
 Parameters of the particles from the PDG-2022 compilation.

Table 4.Continued.

No	No	mass MeV	uncert. MeV	part. p	rop. Comm.	No	o No	${ m mass}$ ${ m MeV}$	uncert. MeV	part.	prop. Comm.
4	47 48	1819 2048 charmed	$\frac{12}{8}$	$K_2(1820) \\ K_4^*(2045) \\ \text{mesons}$	$\frac{1/2(2^{-})}{1/2(4^{+})}$		69 70 71	$5726.1 \\ 5737.2 \\ 5739.5$	$1.3 \\ 0.7 \\ 0.7$	$B_1(5721)^\circ$ $B_2^*(5747)^+$ $B_2^*(5747)^\circ$	$1/2(1^+)$ $1/2(2^+)$ $1/2(2^+)$
	49	1864.84	0.05	D°	$1/2(0^{-})$		72	5964	5	$B_J(5970)^+$	1/2(??)
	50	1869.66	0.05	D^{\pm}	$1/2(0^{-})$		73	5971	5	$B_{J}(5970)^{\circ}$	$1/2(?^{?})$
	51	2006.85	0.05	$D^{*}(2007)^{\circ}$	$1/2(1^{-})$	7		bottom,		strange	mesons
	52	2010.26	0.05	$D^{*}(2010)^{\pm}$	$1/2(1^{-})$		74	5366.92	0.10	B_s°	$0(0^{-})$
	53	2343	10	$D_0^*(2300)$	$1/2(0^+)$		75	5415.4	1.5	B_s^*	$0(1^{-})$
	54	2422.1	0.6	$D_1(2420)$	$1/2(1^+)$		76	5828.70	0.20	$B_{s1}(5830)^{\circ}$	$0(1^+)$
	55	2412	9	$D_1(2430)^{\circ}$	$1/2(1^+)$		77	5839.86	0.12	$B_{s2}(5640)^{\circ}$	$0(2^+)$
	56	2461.10	0.8	$D_2^*(2460)$	$1/2(2^+)$	8		bottom,		charmed	mesons
	57	2763.1	3.2	$D_3^*(2750)$	$1/2(3^{-})$		78	6274.47	0.32	B_c^+	$0(0^{-})$
5		charmed	,	strange	mesons		79	6871.2	1.0	$B_c(2S)^{\pm}$	$0(0^{-})$
	58	1968.35	0.07	D_s^{\pm}	$0^+(0^-)$	9		$c\overline{c}$ 1	mesons		
	59	2112.2	0.4	$D_s^{*\pm}$	$0(?^{r})$		80	2983.9	0.4	$\eta_c(1S)$	$0^+(0^{-+})$
	60	2317.8	0.5	$D_{so}^{*}(2317)^{\pm}$	$0(0^+)$		81	3096.900	0.006	$J\psi(1S)$	$0^{-}(1^{})$
	61	2459.5	0.6	$D_{s1}(2460)^{\pm}$	$0(1^+)$		82	3414.71	0.30	$\chi_{c0}(1P)$	$0^+(0^{++})$
	62	2535.11	0.06	$D_{s1}(2536)^{\pm}$	$0(1^+)$		83	3510.67	0.05	$\chi_{c1}(1P)$	$0^+(1^{++})$
	63	2569.1	0.8	$D_{s2}^{*}(2573)$	$0(2^+)$		84	3525.38	0.11	$h_c(1P)$	$0^{-(1^{+-})}$
0	64	2714	5	$D_{s1}^*(2700)^{\pm}$	$0(1^{-})$		85	3556.17	0.07	$\chi_{c2}(1P)$	$0^+(2^{++})$
6	0.5	bottom	0.10	mesons	1/0(0=)		86	3637.5	1.1	$n_c(2S)$	$0^{+}(0^{-+})$
	05	5279.34	0.12	B^{\perp}	1/2(0)		87	3686.10	0.06	$\psi(2S)$	$0^{-(1^{})}$
	67	5279.00	0.12	D*	1/2(0)		88	3773.7	0.4	$\psi(3770)$	$0^{-}(1^{})$
	69	5725 0	0.21	B(5791)+	$\frac{1}{2}(1)$		89	3823.7	0.5	$\psi_{2}(3823)$	$0^{-}(2^{})$
	08	5725.9	2.1	$B_1(3(21))$	1/2(1')		00	0010.1	0.0	<i>\ \ 2 \(0020)</i>	0 (-)

Table 4.Continued.

No No	${ m mass} { m MeV}$	uncert. MeV	part.	prop. Comm.	No No	${ m mass} { m MeV}$	uncert. MeV	part.	prop. Comm.
90	3842.71	0.20	$\psi_3(3842)$	$0^{-}(3^{})$	113	10255.46	0.50	$\chi_{b1}(2P)$	$0^+(1^{++})$
91	3871.65	0.06	$\chi_{c1}(3872)$	$) 0^{+}(1^{++})$	114	10259.8	1.2	$h_b(2P)$	$0^{-}(1^{+-})$
92	3887.1	2.6	$Z_{c}(3900)$	$1^{+}(1^{+-})$	115	10268.65	0.50	$\chi_{b2}(2P)$	$0^+(2^{++})$
93	3921.7	1.8	X(3915)	$0^{+}(0^{++})$	116	10355.2	0.5	$\Upsilon(3S)$	$0^{-}(1^{})$
94	3922.5	1.0	$\chi_{c2}(3930)$	$0^{+}(2^{++})$	117	10513.4	0.7	$\chi_{b1}(3P)$	$0^+(1^++)$
95	4024.1	1.9	$X(4020)^{\pm}$	$= 1^+(??^-)$	118	10524.0	0.8	$\chi_{b2}(3P)$	$0^+(2^{++})$
96	4039	1	$\frac{11}{2}(4040)$	$0^{-}(1^{})$	119	10579.4	1.2	$\Upsilon(4S)$	$0^{-}(1^{})$
97	4146.5	3.0	$\gamma(1010)$	$0^{+}(1^{++})$	120	10607.2	2.0	$Z_b(10610)$	$1^+(1^{+-})$
08	4101	5	$\chi_{c1}(4140)$	$0^{-}(1^{})$	121	10652.2	1.5	$Z_b(10650)$	$1^+(1^{+-})$
90	4191	26	$\psi(4100)$	0(1)	122	10885.2	2.6	$\Upsilon(10860)$	$0^{-}(1^{})$
99	4222.1	2.0	$\psi(4250)$	0(1)	123	11000	4	$\Upsilon(11020)$	$0^{-}(1^{})$
100	4280	8	$\chi_{c1}(4274)$	$) 0^{+}(1^{++})$	11	baryons			
101	4372	9	$\psi(4360)$	$0^{-}(1^{})$	124	938.272	0.000	\mathbf{p}	$1/2(1/2^+)$
102	4421	4	$\psi(4415)$	$0^{-}(1^{})$	125	939.565	0.000	n	$1/2(1/2^+)$
103	4630	6	$\psi(4660)$	$0^{-}(1^{})$	126	1660	5	$N(1675)5/2^{-}$	$1/2(5/2^{-})$
10		$b\overline{b}$	mesons		127	1232	2	$\Delta(1232)3/2^+$	$3/2(3/2^+)$
104	9398.7	2.0	$p_b(1S)$	$0^+(0^{-+})$	128	1115.683	0.006	Λ	$0(1/2^+)$
105	0460.20	0.96	$\gamma_0(1c)$	$0^{-}(1^{})$	129	1405.1	1.3	$\Lambda(1405)1/2^{-}$	$0(1/2^{-})$
105	9400.30	0.20	1(10)	0(1)	130	1519	1	$\Lambda(1520)3/2^{-}$	$0(3/2^{-})$
100	9859.44	0.42	$\chi_{b0}(1P)$	$0^{+}(0^{++})$	131	1674	4	$\Lambda(1670)1/2^{-}$	$0(1/2^{-})$
107	9892.78	0.26	$\chi_{b1}(1P)$	$0^+(1^{++})$	132	1690	5	$\Lambda(1690)1/2^{-1}$	$0(1/2^{-})$
108	9899.3	0.8	$h_b(1P)$	$0^{-}(1^{+-})$	133	1820	5	$\Lambda(1820)5/2^{+}$	$0(5/2^+)$
109	9912.21	0.26	$\chi_{b2}(1P)$	$0^+(2^{++})$	134	1825	5	$\Lambda(1830)5/2^+$	$0(5/2^+)$
110	10023.26	0.31	$\Upsilon(2S)$	$0^{-}(1^{})$					
111	10163.7	1.4	$\Upsilon_2(1D)$	$0^{-}(2^{})$					
112	10232.5	0.4	$\chi_{b0}(2P)$	$0^+(0^{++})$					

Table 4.Continued.

No No	${ m mass}$ ${ m MeV}$	uncert. MeV	part.	prop.	Comm.	No No	${ m mass}$ ${ m MeV}$	uncert. MeV	part.	prop.	Comm.
135	1189.37	0.07	Σ^+	1($(1/2^+)$	158	2453.97	0.14	$\Sigma_{c}(2455)^{++}$	$1(1/2^+)$)
136	1192.642	0.024	Σ°	1($(1/2^+)$	159	2452.65	0.22	$\Sigma_{c}(2455)^{+}$	$1(1/2^+)$)
137	1197.449	0.030	Σ^{-}	1($(1/2^+)$	160	2453.75	0.14	$\Sigma_c(2455)^\circ$	$1(1/2^+)$)
138	1382.83	0.34	$\Sigma(1385)3/2^{-1}$	- 1($(3/2^+)$	161	2518.41	0.22	$\Sigma_{c}(2520)^{++}$	$1(3/2^+)$)
139	1383.7	1.0	$\Sigma(1385)3/2^{\circ}$	P 1($(3/2^+)$	162	2517.4	0.7	$\Sigma_{c}(2520)^{+}$	$1(3/2^+)$)
140	1387.2	0.5	$\Sigma(1385)3/2^{-1}$	- 1($(3/2^+)$	163	2518.48	0.20	$\Sigma_c(2520)^\circ$	$1(3/2^+)$)
141	1775	5	$\Sigma(1775)5/2^{-1}$	- 10	$5/2^{-})$	164	2801	6	$\Sigma_c(2800)^{++}$	$1(?^{?})$	
142	1314.86	0.20	Ξ°	1/2	$2(1/2^+)$	165	2792	14	$\Sigma_{c}(2800)^{+}$	$1(?^{?})$	
143	1321.71	0.07	Ξ^{-}	1/2	$2(1/2^+)$	166	2806	7	$\Sigma_{c}(2800)^{\circ}$	$1(?^{?})$	
144	1531.80	0.32	$\Xi(1530)^{\circ}$	1/2	$2(3/2^+)$	167	2467.71	0.23	Ξ_c^+	1/2(1/2)	+)
145	1535.0	0.6	$\Xi(1530)^{-}$	1/2	$2(3/2^+)$	168	2470.44	0.28	Ξ_c°	1/2(1/2)	+)
146	1690	10	$\Xi(1690)$	1	/2(??)	169	2578.2	0.5	$\Xi_c^{\prime+}$	1/2(1/2)	+)
147	1823	5	$\Xi(1820)3/2^{-1}$	-1/2	$D(3/2^{-})$	170	2578.7	0.5	$\Xi_c^{\prime \circ}$	1/2(1/2)	+)
148	2025	5	$\Xi(2030)$	1/2	$(>5/2^{?})$	171	2645.10	0.30	$\Xi_c(2645)^+$	1/2(3/2)	+)
140	1672.45	0.20	(2030)	1/2	$(\leq 0/2)$	172	2646.16	0.25	$\Xi_{c}(2645)^{\circ}$	1/2(3/2)	+)
149	2012.40	0.29	$O(2012)^{-}$		(3/2)	173	2791.9	0.5	$\Xi_c(2790)^+$	1/2(1/2)	-)
150	2012.4	0.9	$\Omega(2012) = \Omega(2250) =$	C	$D(2)^{(2)}$	174	2793.9	0.5	$\Xi_{c}(2790)^{\circ}$	1/2(1/2)	-)
151	2202	9	$\Omega(2250)$	0/	(1/2+)	175	2816.51	0.25	$\Xi_c(2815)^+$	1/2(3/2)	-)
152	2280.40	0.14	Λ_c	0($(1/2^{+})$	176	2819.79	0.30	$\Xi_{c}(2815)^{\circ}$	1/2(3/2)	-)
153	2592.25	0.28	$\Lambda_c(2595)^+$	0((1/2)	177	2964.3	1.5	$\Xi_c(2970)^+$	1/2(3/2)	-)
154	2628.11	0.19	$\Lambda_c(2625)^+$	0($(3/2^{-})$	178	2967.1	1.7	$\Xi_{c}(2970)^{\circ}$	1/2(3/2)	-)
155	2856.1	2.3	$\Lambda_c(2860)^+$	0($(3/2^{+})$	179	3055.9	0.4	$\Xi_{c}(3055)$	$?(?^{?})$	
156	2881.63	0.24	$\Lambda_c(2880)^+$	0($(5/2^+)$	180	3077.2	0.4	$\Xi_c(3080)^+$	1/2(??)
157	2939.6	1.5	$\Lambda_{c}(2940)^{+}$	0($(3/2^{-})$	181	3079.9	1.4	$\Xi_c(3080)^{\circ}$	1/2(??)

Table 4.Continued.

No No	${ m mass}$ ${ m MeV}$	uncert MeV	. part.	prop.	Comm.	No No	${ m mass}$ MeV	uncert. MeV	part.	prop.	Comm.
182	2695.2	1.7	Ω_c°	0(1/	(2^+)	198	5830.32	0.27	Σ_b^{*+}	$1(3/2^+)$	
183	2765.9	2.0	$\Omega_c(2770)^{\circ}$	0(3/	(2^+)	199	5834.74	0.30	Σ_b^{*-}	$1(3/2^+)$	
184	3000.41	0.22	$\Omega_c(3000)^{\circ}$?(?	??)	200	6095.8	1.7	$\Sigma_b (6097)^+$??	
185	3050.19	0.13	$\Omega_c(3050)^{\circ}$?(?	??)	201	6098.0	1.8	$\Sigma_{b}(6097)^{-}$??	
186	3065.54	0.26	$\Omega_c(3065)^{\circ}$?(?	??)	202	5797.0	0.6	Ξ_b^-	$1/2(1/2^+)$)
187	3090.1	0.5	$\Omega_c(3090)^{\circ}$?(?	??)	203	5791.9	0.5	Ξ_b°	$1/2(1/2^+)$)
188	3119.1	1.0	$\Omega_c(3120)^{\circ}$?(?	??)	204	5935.02	0.05	$\Xi_b'(5935)^-$	$1/2^{+}$	
189	3621.6	0.4	Ξ_{cc}^{++}	?(?	??)	205	5952.3	0.6	$\Xi_b(5945)^\circ$	$3/2^{+}$	
190	5619.60	0.17	Λ_b°	0(1/	(2^+)	206	5955.33	0.13	$\Xi_b(5955)^-$	$3/2^{+}$	
191	5912.19	0.17	$\Lambda_b(5912)^{\circ}$	1/2	2-	207	6100.3	0.6	$\Xi_b(6110)^-$	$3/2^{+}$	
192	5920.09	0.17	$\Lambda_b(5920)^{\circ}$	3/2	2-	208	6227.9	0.9	$\Xi_b(6227)^-$??	
193	6072.3	2.9	$\Lambda_b(6070)^{\circ}$	1/2	2^{+}	209	6226.8	1.6	$\Xi_b(6227)^\circ$		
194	6146.2	0.4	$\Lambda_b(6146)^{\circ}$	3/2	2^{+}	210	6045.2	1.2	Ω_b^-	$0(1/2^+)$	
195	6152.5	0.4	$\Lambda_b(6152)^{\circ}$	5/2	2^{+}	211	4311.9	7.0	$P_c(4312)^+$		
196	5810.56	0.25	Σ_b^+	1(1/	(2^+)	212	4440	4	$P_c(4440)^+$		
197	5815.64	0.27	Σ_{b}^{-}	1(1/	(2^+)	213	4457.3	4	$P_c(4457)^+$		

In the previous works, integer relations between the maxima in the mass- difference distributions of all particles known with uncertainty less than 10 MeV were discussed.

Figure 1: ΔM distribution of all differences between particle masses from PDG-2021 (av-eraging 5 MeV) the region 0–4600 MeV. Maxima at 16 MeV= 2δ , 49 MeV= 6δ , 338 MeV $\approx m_{\omega} - M_q$, 447 MeV $\approx M_q$, 780 MeV= m_{ω} , 1042 MeV= $8f_{\pi}$, 1931-1402 MeV= $10m_{\pi}$ and 1774

MeV $\approx m_{\tau}$. Intervals 3504 MeV $\approx 8M_q = \delta^{\circ}/2$, 3962 MeV $\approx 9M_q$ and 4427 MeV $\approx 10M_q$ are considered in [2].

There are integer ralations between the positions of maxima at 16 MeV and 49 MeV (Fig. 1, top, ratio 3.06), at 780 MeV and 49 MeV (Fig. 1, top, ratio 15.92).

The parameter δ being determined from the positions of two first maxima in Fig. 1, top, and their ratio 1:3, is (16 MeV+49 MeV=65 MeV)/2(1+3=4)=8.125 MeV.

The position of maximum at 780 MeV (about 782 MeV, the mass of the omega meson) is exactly integer 6:1 to the well known pion parameter $f_{\pi} = 130.7 \pm 0.4$ MeV.

Figure 2: ΔM^{AIM} distribution of particle masses from PDG–2020 for the energy re-gion 0–1000 MeV adjacent to fixed intervals x. Top: $x = m_{\tau}$ =1777 MeV, maximum at 212 MeV= $2m_{\mu}$.

To check the systematic character of the observed grouping of the energy intervals the correlation Adjacent Interval Method (AIM) program was used. In this method, not all intervals were analyzed, but only those adjacent to previously selected states. The selection of states (to analyze the intervals between them or between them and other states of the spectrum) was made taking into account their participation in the formation of maxima in the total distribution of intervals (which corresponded to their distinguishing character). Fixing the intervals x in the full spectrum of states (which formed a maximum at this value x), the distribution of intervals from the ends of x intervals to all other states of the spectrum was analyzed. Such accompanying intervals were denoted as ΔM^{AIM} .

In Fig. 2 the distribution of intervals adjacent to 1777 MeV= $m_{\tau}=x$ is shown, and the maximum at 212 MeV= $2m_{\mu}=m_{\tau}-2m_{\omega}$ in the response function of the AIM pro-gram is seen. This means that the value 1777 MeV is the sum of $2m_{\mu}=212$ MeV and $2m_{\omega}=1564$ MeV=2.782 MeV.

The equation (1), where m_{τ} , m_{μ} and m_{e} are the lepton masses, has the universal character.

$$m_{\tau} = 2m_{\mu} + 2m_{\omega} \approx 2 \cdot 13 \cdot 16m_e - 2m_e + 2 \cdot 96 \cdot 16m_e \tag{1}$$

Besides the distinguishing character of the electron rest mass we see that correlations in particle masses reflect general dynamics of all particle mass origin. not only leptons and constituent quarks. If we exclude the muon and τ -lepton masses from consideration, all maxima in total distribution (Fig. 1) will be preserved.

The manifestation of lepton masses demonstrates the fundamental character of corre-lations in nuclear data and particle masses.

Conclusions

In this work, for the first time, the possibility of the direct estimation of the period δ =8.176 MeV from the pion parameter f π =130.7 MeV is shown: $m_e(0.510998 \text{ MeV}) \times 16 \times 16 = 130.81571 \text{ MeV}$. We see coincidense of two values 130.81571 MeV and 130.7 MeV±0.4 MeV. This means that particle masses are integers of one and the same value $\delta = 16m_e$. The value f π is an initial mass of the pion and is equal to $17\delta + m_e$, and simultaneously, the muon mass is equal to $13\delta - m_e$, and additionally, the third lepton mass m τ is also integer

of δ , namely 1774 MeV/8.176 MeV=216.977.

References

1. Poster report "Fine and superfine structures in neutron resonance positions", this con-ference.

2. S.I. Sukhoruchkin, "Electron-based Constituent Quark Model". Nucl. Part. Phys. Proc. **318-323** (2022) 142.

3. S.I. Sukhoruchkin, "Analysis of particle masses, nuclear data and parameters of con-stituent quarks". Nucl. Part. Phys. Proc. **312-317** (2021) 185.