Project <u>TANGRA</u> TAgged Neutrons & Gamma-Rays

FLNP

"Measurement of Relative Efficiency of HPGe and LaBr₃ detector using ⁶⁰Co, ¹⁵²Eu, ²²⁸Th and ³⁵Cl(n, γ)³⁶Cl"

Pretam K. Das^{1,3}, D. N. Grozdanov^{1,2}, N. A. Fedorov^{,1}, Yu. N. Kopach¹, I. N. Ruskov², U. Mishra⁴

- 1. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia.
- 2. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Science, 1784 Sofia, Bulgaria.
- 3. Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh.
- 4. Department of Physics, Banaras Hindu University, Varanasi-221005, India.

*****Introduction

- *****Tagged Neutron Method
- Experimental Set-Up
- *Data Analysis.
- *****Photo-peak Efficiency.
- **Covariance Matrix Analysis.**
- *****Geant4 Monte Carlo Simulation
- *****Relative and Intrinsic Photo-peak Efficiency.
- **Conclusion**.

Introduction

- Information about neutron-nuclear interaction is extremely important for both fundamental and applied physics.
- The study of neutron-nuclear processes also allows learning more about the properties of nuclear forces and the structure of nuclei.

FLNP

 \mathbf{R}

- ✤ To fulfill the demand of energy of our modern society, we need different types of energy production sources like solar, wind, hydro, fission, fusion reactors.
- Between them the most effective sources of clean energy still are the nuclear power plants. (Need to solve the utilization of the burned fuel and radioactive wastes from Generation-I- III nuclear power reactors).
- ✤ To develop the Generation-IV fast neutron reactors, we need to have a good and reliable libraries of information about the characteristics of different type of fast neutron induced reactions (elastic and nonelastic neutron scattering, fission, etc.)
- ✤ Accurate soil carbon field mapping can benefit modern agricultural practices. For creating such maps, soil carbon measurements using neutron-gamma analysis were developed and applied as a better alternative to traditional chemical analysis.
- Main advantage of the tagged neutron method is possibility to detect diamond inside the kimberlite stone without crushing in grinding rolls.
- * In the case of fast neutron induced nuclear reaction many possibilities (channels) are possible (open), i.e. $(n, xn\gamma)$, (n, p), (n, α) , (n, f), depends on the energy of the neutrons and the mass of the nuclei, and the use of multidetector systems is preferable.

Introduction

Our (n, xy) reactions using TNM for accurate Data:

- * The TANGRA project (TAGGED NEUTRONS & GAMMA RAYS) is being implemented at JINR with the participation of Russian and foreign institutes
- * Eliminate discrepancies between available experimental and evaluated data.
- For some nuclei/gamma transitions the gamma-ray anisotropy hasn't been measured at all.
- * Investigate possible differences between neutron and proton scattering.
- Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis.
- Investigation of reactions (n,2n'), (n,n') using the tagged neutron method

Available data on (n,xy) reactions is not accurate:

- Poor cross-section accuracy (up to several times discrepancy)
- * Angular distributions for low-intense γ-transitions have not been measured before.

FLNP

LHEP

Teonorthur to

 \mathbf{R}

Aim of this Work

- * Possible upgrade of the setup with LaBr₃(Ce) and HPGe γdetectors to measure angular distributions.
- * To measure cross-section value of (n,xγ) reaction accurately, we need calibrate our LaBr3(Ce) and HPGe γ-detectors.
- We have analyzed the photo-peak efficiencies of HPGe and LaBr₃(Ce) using ⁶⁰Co, ¹⁵²Eu and ²²⁸Th.
- We have measured the relative photo-peak efficiency using ³⁵Cl(n, γ)³⁶Cl reactions.
- We have compared our data with Geant4 and found good agreement between our data.
- ***** We have added the covariance matrix analysis in our calculation.

d + t \rightarrow ⁴He (3.5MeV) + n (14.1MeV)

JINR

Main components:

- 1. Neutron generator with a position sensitive detector of α -particles
- 2. Shielding
- 3. Detectors of γ -rays / neutrons
- 4. Sample

Main advantages of the method:

- Precise determination of the number of neutrons hitting the target: each neutron is "tagged" by the αdetector
- Information about space and time location of the interaction of the neutron with a target (X,Y-coordinates are given by the pixels of the α-detector; Z,t-coordinates are defined by the time-of-flight)
- Due to the selection of a small space-time volume of interaction (voxel) the contribution of background is significantly reduced
- * The method allows to identify different elements and substances using their characteristic gamma-rays

Studying of Characteristics of HPGe and LaBr₃ Detectors

We have performed the Characteristics Srudies of HPGe and LaBr3 gamma-rays detectors.

Possible upgrade of the setup with LaBr₃(Ce) γ -detectors to measure angular distributions.

126cm

*	C	naracte	eristics of	of Gamn	na-Sourc	es 🗾
JINR	Radioactive Source	Activity (kBq)	Half-Life (Years)	Daughter Nucleus	Energy (keV)	Emission Probability [%]
FLNP	⁶⁰ Co	96	5.2712	⁶⁰ Ni	1173.23	99.85
SUSTORY of Allo				⁶⁰ Ni	1332.49	99.99
					121.7817	28.58
					244.6975	7.583
LHEP					344.2785	26.50
ЛФВЭ	152 F 11	108	13.54	¹⁵² Sm	411.1163	2.234
ДРБ					443.965	2.821
					778.904	12.942
					867.378	4.245
					964.079	14.605
					1085.869	10.207
Contracting and					1112.074	13.644
TR					1408.006	21.005
				²¹² Pb	238.63	43.63
Nahae				²⁰⁸ Pb	510.74	8.08
INRNE	220-1			²⁰⁸ Pb	583.19	30.54
٢	²²⁰ Th	106	1.9131	²¹² Pb	727.33	6.65
				²⁰⁸ Pb	860.53	4.84
				²¹² Pb	1620.74	1.51
100 C C C C C C C C C C C C C C C C C C				²⁰⁸ Pb	2614.51	35.84
		P.K. Da	s et.al., ISINN	-30 Conference,	2024	8

Characteristics of Gamma-Sources

Figure shows the Gamma ray spectrum of all the radioactive sources ⁶⁰Co (Black line shows the Raw data, Red Line shows the Background data and Blue line shows the Data without Background),

 The number of counts of photo peak can be calculated from the below equation:

$$N = N_{Raw} - N_{BG}$$

Where N_{Raw} is the raw data and N_{BG} is the background data.

Figure shows the fitting peaks to count the number of events in the photopeak.

Gamma-ray Spectrum of ¹⁵²Eu, ²²⁸Th and ³⁵Cl(n, γ)³⁶Cl

JINR

P.K. Das et.al., ISINN-30 Conference, 2024

4000 5000 6000 7000

Channel

Absolute efficiency can be defined as

number of pulses recorded

 $\in_{abs} = \frac{1}{number of radiation quanta emitted by source}$

Photo-peak efficiency,

$$\epsilon_{exp} = \frac{N}{AI_y T_m} \times 100\%$$

Where,

A= Activity of the Radioactive Source. N=Number of Counts of the Photo-peak.

I_Y= Emission Probability

T_m= Measuring time.

Error in Photo-peak Efficiency,

$$\delta \epsilon_{exp} = \epsilon_{exp} \sqrt{\left(\frac{\delta N}{N}\right)^2 + \left(\frac{\delta A}{A}\right)^2 + \left(\frac{\delta I_Y}{I_Y}\right)^2 + \left(\frac{\delta T_m}{T_m}\right)^2}$$

	*	Photo-peak Efficiency										
_	JINR	⁶⁰ Co										
	FINP	Energy (keV)	Efficiency (%)	Error	¹⁵² Eu							
		I I 73 I 332	0.00413526 0.003833126	3.59097E-05 3.2463E-05	Energy (keV)	Efficiency (%)	Error					
		228 T h			121	0.014735546	0.000234135					
	VIPE OT				244	0.011367401	0.000174988					
	- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Energy (keV)	Efficiency (%)	Error	344	0.009137874	1.19E-04					
				0.000407	411	0.009230878	0.000228039					
		238	0.01264	0.000197	443	0.008603681	0.000190345					
	Tomo Antonio Com	509	0.00714	0.000127	778	0.005391136	1.01E-04					
	R	582	0.00694	8.57E-05	867	0 005276983	6 77E-05					
	NANAE	726	0.00634	1.00E-04	064	0.004644202	1 69E 05					
	INRNE	859	0.00458	7.06E-05	1095	0.004044203	4.000-00					
	Â	4620	0.00224	6 465 05	Cour	0.004245793	4.34E-00					
	and a second sec	1020	0.00331	0.10E-03	1112	0.00402167	3.90E-05					
	Aller o site date	2614	0.00234	1.97E-05	1408	0.003361192	2.86E-05					
			P.K. Das	et.al., ISINN-30	Conference, 202	4	12					

Covariance Analysis

➤The covariance (correlation) analysis is a mathematical tool that calculates the best estimate of the uncertainty as well as crosscorrelations between measured quantities.

Photo-peak Efficiency

$$\epsilon_{exp} = \frac{N}{AI_y T_m}$$

* There are several sources of uncertainty in the calibration process, which propagate as the uncertainty in the detector's efficiency. This is basically from N, I γ , A. As a result, the detector's efficiency can be expressed as a function of three attributes,

$$\varepsilon = f(N, I\gamma, A)$$

Covariance Matrix Analysis

Let x1, x2, x3 represent the three attributes, namely, γ -ray abundance, γ -ray peak counts, source activity of the radio nuclide respectively.

If Δx_r is the uncertainty in x_r which is used in measuring efficiency ϵ_i then the partial uncertainty in ϵ_i due to the attribute x_r is given by

$$e_{ir} = \frac{\partial \epsilon_i}{\partial x_r} \Delta x_r, \qquad i = 1, 2, 3, 4 \dots 11 \ (for \ 152 - Eu)$$

The covariance matrix for these i-th (11 for Eu-152) measurements is given by

$$(V_{\epsilon})_{ij} = \sum_{r=1}^{W} S_{ijr} e_{ir} e_{jr}$$

where S_{ijr} is the micro–correlation between e_{ir} and e_{jr} due to the r-th attribute.

With this information of micro–correlations and partial uncertainties, we generate covariance matrix for efficiencies with Complete information of uncertainties. Infact the total uncertainties in measured efficiencies are given by

$$(\sigma_{\epsilon})_i = \sqrt{(V_{\epsilon})_{ij}}$$

Covariance Matrix Analysis

The efficiency calibration of the HPGe detector using the single source of ⁶⁰Co for the 2 characteristic gamma energies resulting in the 2×2 covariance matrix of efficiencies.

Partial Uncertainties due to Attribute for ⁶⁰Co

Energy (KeV)	Efficiency	$\mathbf{R}_1 = \Delta \mathbf{C}$	$\mathbf{R}_2 = \Delta \mathbf{I}_y$	$\mathbf{R}_3 = \Delta \mathbf{A}$
1173	0.00414±0.00004	4.45874E-05	1.2443E-06	6.21221E-05
1332	0.00383±0.00003	4.28675E-05	7.6678E-07	5.75026E-05

Covariance Matrix of 60Co

Energy (KeV)	Efficiency	Covaria	ance Matrix
	0.00414±7.6477E-05		
1173		5.84874E-09	
1332	0.00383 <u>+</u> 7.1727E–05	3.57218E-09	5.14476E-09

ЛФВЭ

ДРБ

Covariance Matrix Analysis

The efficiency calibration of the HPGe detector using the single source of ¹⁵²Eu for the 11 characteristic gamma energies resulting in the 11×11 covariance matrix of efficiencies.

A A A A A A A A A A A A A A A A A A A	Energy	Efficiency	Partial Uncert	Total		
	(Kev)		RI(∆N)	R2(∆ly)	R3(ΔA)	Uncertainty(Δε)
HEP	121	0.01474 <u>+</u> 0.00023	8.98753E-05	3.09354E-05	0.000221033	0.000240604
0	244	0.011367±0.00017	0.000153242	5.99626E-05	0.000170511	0.000236965
\square	344	0.009138±0.00012	7.34998E-05	6.89651E-05	0.000137068	0.000170135
	411	0.009231±0.00023	0.000254434	0.000537159	0.000138463	0.000610286
5	443	0.008604±0.00019	0.000218593	0.000426982	0.000129055	0.000496741
CUTA CLEAR	778	0.00539±0.000101	8.07817E-05	3.33301E-05	8.0867E-05	0.000119063
3	867	0.00528±0.000068	0.000139556	3.72932E-05	7.91547E-05	0.000164718
Æ	964	0.00464±0.000047	7.05748E-05	2.22591E-05	6.9663E-05	0.000101633
VE	1085	0.00425+0.000043	8.04793E-05	2.06709E-05	6.36869E-05	0.000104691
	1112	0.004022+0.000009	6.79754E-05	2.35944E-05	6.03427E-05	9.39074E-05
	1408	0.003361±0.000029	5.00634E-05	1.44017E-05	5.04179E-05	7.24963E-05

Covariance matrix for Efficiency of detector for ¹⁵²Eu

35													Addres (Alexandres) and Aldress And Aldr
JINR	Energy	Efficiency		Cova	iriance	matrix	of Effi	ciency (of HPG	e detec	tor for ²	²²² Th	
	KUV	Efficiency											
	121	0.01474 <u>+</u> 0.00024	5.7890 2E-08										
	244	0.011367±0.00024	3.7688 6E-08	5.6152 6E-08									
LHEP TOB3	344	0.009138±0.00017	3.0296 6E-08	2.3371 6E-08	2.8946 E-08								
AP5	411	0.009231±0.00061	3.0604 9E-08	2.3609 5E-08	1.8978 8E-08	3.72448 E-07							
	443	0.008604±0.00050	2.8525 4E-08	2.2005 3E-08	1.7689 3E-08	1.78693 E-08	2.46752 E-07						
	778	0.00539±0.00012	1.7874 3E-08	1.3788 7E-08	1.1084 3E-08	1.11971 E-08	1.04363 E-08	1.41761 E-08					
	867	0.00528±0.00016	1.7495 8E-08	1.3496 7E-08	1.0849 6E-08	1.096E- 08	1.02153 E-08	6.401E- 09	2.71321 E-08				
NAHAE	964	0.00464 <u>+</u> 0.000101	1.5397 8E-08	1.1878 3E-08	9.5485 7E-09	9.64575 E-09	8.99036 E-09	5.63344 E-09	5.51415 E-09	1.03292 E-08			
INRNE	1085	0.00425±0.000105	1.4076 9E-08	1.0859 3E-08	8.7294 4E-09	8.81828 E-09	8.21911 E-09	5.15017 E-09	5.04112 E-09	4.43662 E-09	1.09602 E-08		
	1112	0.004022 <u>+</u> 0.000094	1.3337 7E-08	1.0289 1E-08	8.2710 5E-09	8.35523 E-09	7.78753 E-09	4.87973 E-09	4.77641 E-09	4.20365 E-09	3.84304 E-09	8.81859 E-09	
	1408	0.003361±0.000073	1.1144 E-08	8.5968 1E-09	6.9106 8E-09	6.98101 E-09	6.50668 E-09	4.07714 E-09	3.99081 E-09	3.51226 E-09	3.21096 E-09	3.04235 E-09	5.25572 E-09
		P.	K. Das	et al.	ISIN	N-30 C	onferer	1ce. 20'	24				17

	Energ y (KoV)	Energ Efficiency Partial Uncertainties due to Attribute for y KeV						
			$\mathbf{R}_1 = \Delta \mathbf{C}$	$\mathbf{R}_2 = \Delta \mathbf{I}_y$	$\mathbf{R}_3 = \Delta \mathbf{A}_0$	(Δε)		
	238	0.01264 <u>+</u> 0.0002	0.000124146	8.694E-05	0.000769595	0.000784		
	509	0.00714±0.00013	0.0002167	0.00020309	0.000434551	0.000524		
	582	0.00694±0.000086	0.000109923	1.8176E-05	0.000422628	0.000436		
Photos Photos	726	0.00634±0.000010	0.000225227	4.7692E-05	0.000386343	0.000446		
	859	0.00458±0.0000071	0.000224373	3.7865E-05	0.000279059	0.000352		
	1620	0.00331±0.0000062	0.000341553	2.1936E-05	0.000201745	0.000389		
	2614	0.00234 ±0.0000020	5.89427E-05	1.6332E-05	0.000142606	0.000155		

Covariance Matrix Analysis

	Energy	Efficiency		Covarianc	e matrix of	f Efficiency	of detecto	r for ²²² Th	l
LHEP	238	0.0122646+0.000784	6.14355E- 07						
РБ	509	0.0069252+0.000524	3.34428E- 07	2.74323E- 07					
	582	 0.0067352+0.000436	3.25252E- 07	1.83653E- 07	1.9033E- 07				
	726		2.97328E- 07	1.67886E- 07	1.63279E- 07	1.9933E-07			
R	859		2.14762E- 07	1.21265E- 07	1.17938E- 07	1.07812E- 07	1.24158E- 07		
	1620	0.003215±0.000389	1.55262E- 07	8.76685E- 08	8.52631E- 08	7.79428E- 08	5.62988E- 08	1.51094E- 07	
INKNE	2614	0.0022726 <u>+</u> 0.000155	1.09749E- 07	6.19696E- 08	6.02693E- 08	5.50948E- 08	3.97955E- 08	2.877E-08	2.38766E- 08

N be the number of events of the Photo-peak, N_{norm} be the normalization of the number of events of the photo-peaks.

FLNP

 $\epsilon_{Rel} = R \times \epsilon_{Const(fitting)}$

Where, $\epsilon_{Const(fitting)}$ is the constant term from fitting the photo-peak efficiency curve using 60Co, 152Eu and 228Th.

Feomory Lawrence

R

Monte Carlo Simulation: Geant4

- Geant4 (short for "Geometry and Tracking 4"), a software toolkit for the MC simulation of particle movement through matter.
- It is a top tool for simulating particle-matter collisions in a variety of contexts.

Photo-peak efficiency of Geant4,

$$\epsilon_{MC} = \frac{N_{De}}{N_{Ge}} \times 100\%$$

Where,

 N_{De} = Number of gamma-rays detected by the detector.

N_{Ge}=Number of gamma-rays generated by the Geant4.

P.K. Das et.al., ISINN-30 Conference, 2024

The Instrinsic Photo-peak Efficiency

d is the source-detector distance. a is the detector radius.

Conclusion

The primary goal of the TANGRA project at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, is to conduct comprehensive studies on the inelastic scattering of 14.1 MeV neutrons on atomic nuclei using the tagged neutron method (TMN).

- ✤ As part of this ongoing research program, we measured the relative photopeak efficiencies of the HPGe and LaBr3 detectors within a newly constructed experimental facility.
- We have calculated the relative efficiency and Intrinsic efficiency of HPGe detector using the standard gamma-ray point sources including ⁶⁰Co, ¹⁵²Eu, and ²²⁸Th, as well as the ³⁵Cl(n,γ)³⁶Cl reaction.
- The simulations demonstrated very good agreement between the results obtained from Monte Carlo calculations and the experimental data.
- The findings of our research may prove useful for processing and analyzing data obtained during experiments within the TANGRA project, as well as for scientists utilizing HPGe and LaBr₃ detectors for gamma-ray spectroscopy.

Thank You for Your Attention

JINR

FLNP

LHEP A0B3

RB

