

International Seminar on Interaction of Neutrons with Nuclei

To the UCN source at periodic pulsed reactor

G.V. Kulin, A.I. Frank, V.A. Kurylev, A.A. Popov, K.S. Osipenko, M.A. Zakharov

isinn-30

SCENTRIC RESEARCH

Sharm El-Sheikh

Egypt

JINR

F.L.Shapiro, V.I..Luschikov.A.V. Strelkov and Yu.N. Pokotilovsky

1969

Ultra Cold Neutrons

General definition: UCNs are neutrons whose energy is so low that they are reflected under any angle of incidence can be contained in traps

E (eV)		T (K)	λ (A)
Ultra cold <10 ⁻⁷		≈ (<) mK	>800
Very cold	Very cold 10 ⁻⁷ – 10 ⁻⁴		800 - 30
Cold (0.1-10)×10 ⁻³		10-120	30-3
Thermal (10-100) ×10-3		120-1000	4-1
Resonant >1			< 0.1

UCNs are important tools for:

Search for the neutron EDM

Measurement of the neutron lifetime

Measurement of angular correlation coefficients of neutron beta decay

Search for neutron-antineutron oscillations

Quantization of neutron states in a gravitational field and search for new interactions

Non-stationary quantum mechanics and neutron optics

Ultra Cold Neutron sources

Ultra Cold Neutron sources

Pulse source and UCN pumping in a trap

F.Shapiro, 1972

 $\tau_1 > \tau$ – chopper opening time S – active convertor area Σ – area of the trap μ – probability of the UCN lost

Pulse source and UCN pumping in a trap

F.Shapiro, 1972

 $au_1 > au$ - chopper opening time S - active convertor area Σ - area of the trap μ - probability of the UCN lost

The trap is remote from the moderator due to the presence of biological shielding

Time structure of the beam at the entrance to the UCN trap

! The spread of the UCN flight times will exceed the intervals between pulse

Time structure of the beam at the entrance to the UCN trap

! The spread of the UCN flight times will exceed the intervals between pulse

!The flux of neutrons, which can be trapped after deceleration, has a pulsed structure

Pumping option of the pulsed source – decelerator

During deceleration, all neutrons change their energy by the same value

- ✓ The extraction of neutrons with higher speeds than that of the UCN from the moderator converter provides better conditions for the transportation of neutrons and allows the use of a more efficient converter
- ✓ The pulse structure of the "useful" neutrons is remain, but the pulse duration at the entrance to the trap exceeds the initial one.

Decelerator — broadband gradient (adiabatic) spin flipper

G. M. Drabkin and r. A. Zhitnikov. Sov. Phys. JETP, 11, 729 (1960).
V.I. Luschikov, Yu.V. Taran. NIM 228 (1984) 159
A.N. Bazhenov, V.M. Lobashev, A.N. Pirozhkov and V.N. Slusar. NIM A332 (1984) 534
S.V. Grigoriev, A.I. Okorokov, V.V. Runov. NIM A384 (1997) 451

Decelerator — broadband gradient (adiabatic) spin flipper

G. M. Drabkin and r. A. Zhitnikov. Sov. Phys. JETP, 11, 729 (1960).
V.I. Luschikov, Yu.V. Taran. NIM 228 (1984) 159
A.N. Bazhenov, V.M. Lobashev, A.N. Pirozhkov and V.N. Slusar. NIM A332 (1984) 534
S.V. Grigoriev, A.I. Okorokov, V.V. Runov. NIM A384 (1997) 451

$$\hbar\omega = 2\mu B \qquad \longrightarrow \qquad \Delta E = 2\mu B = \hbar\omega$$

Decelerator — broadband gradient (adiabatic) spin flipper

to decelerate a neutron at a speed of 20 m/s to a speed of 5 m/s

$$\Delta E \approx 2.4 \ \mu \text{eV} \quad B = \frac{\Delta E}{2\mu} \approx 18 \text{ T} \quad f = \frac{\omega}{2\pi} \approx 500 \text{ MHz}$$

Parameters of adiabatic spin flipper

Preliminary magnet design

Technical specifications

Magnetic field (peak)	20 T
Bore diameter	120 mm
Bore type	Room temperature
Dimensions Length Width Height	750 mm 660 mm 1250 mm
Mass (including cryostat, magnet and cooling head)	Less than 1000 kg
Power supply	3-phase 380 V
Consumption	16 kW nominal 30 kW during cooldown)
Magnet wire	Second generation high temperature superconductor (YBCO)
Cooling	Indirect (dry-type)

The work on the design of the magnetic system is carried out in co-operation with SuperOx company

High frequency resonator

The birdcage resonator is a widely used in MRI

- Ability to generate a homogeneous magnetic field over a large volume.
- Allows for a high degree of control over the magnetic field's frequency and amplitude.

Birdcage of UCN spin-flipper (UCNA experiment)

A. T. Holley, L. J. Broussard, J. L. Davis, K. Hickerson, T. M. Ito et al. Rev. Sci. Instrum. 83, 073505 (2012)

High frequency resonator

The birdcage resonator is a widely used in MRI

- Ability to generate a homogeneous magnetic field over a large volume.
- Allows for a high degree of control over the magnetic field's frequency and amplitude.

Birdcage of UCN spin-flipper (UCNA experiment) A. T. Holley, L. J. Broussard, J. L. Davis, K. Hickerson, T. M. Ito et al. Rev. Sci. Instrum. 83, 073505 (2012)

Q-factor $\approx 10^3$, $B_1 = 0.7$ mT, f = 500 MHz, Input power ≈ 4 kW ! The resonator will operate during the pulse only

High frequency resonator

The birdcage resonator is a widely used in MRI

- Ability to generate a homogeneous magnetic field over a large volume.
- Allows for a high degree of control over the magnetic field's frequency and amplitude.

Birdcage of UCN spin-flipper (UCNA experiment) A. T. Holley, L. J. Broussard, J. L. Davis, K. Hickerson, T. M. Ito et al. Rev. Sci. Instrum. 83, 073505 (2012)

Q-factor $\approx 10^3$, $B_1 = 0.7$ mT, f = 500 MHz, Input power ≈ 4 kW ! The resonator will operate during the pulse only ! The flux of neutrons, which can be trapped after deceleration, has a pulsed structure! the pulse duration at the entrance to the trap exceeds the initial one

! The flux of neutrons, which can be trapped after deceleration, has a pulsed structure! the pulse duration at the entrance to the trap exceeds the initial one

The slower the neutrons, the more time they spend on deceleration

Dispersion of deceleration times

rectangular neutron guide: 60 mm×60 mm

Dispersion of deceleration times

Time lens to compensate deceleration times dispersion

A.I. Frank and Gähler, ISINN-4, Dubna, 1996 A.I. Frank and R. Gähler. Phys. At. Nuc. 63, 545 (2000).

Time lens to compensate deceleration times dispersion

! The slower the neutrons, the more time they spend on deceleration

The time lens inverts the velocities in order to partially compensate the dispersion of the time of subsequent deceleration and to minimise bunch duration at the trap entrance

$$\delta t_{trap} = \delta \tau - \delta t$$

A time-dependent magnetic field lens

Neutrons change their energy when passing a homogeneous in space time-varying magnetic field L.Niel, H.Rauch, Z. Phys.B. - Condensed Matter 74, 133 (1989)

Time of flight of the bunch	$\Delta t = t_2 - t_1 \approx 10 - 15 \text{ ms}$
Neutron velocity	$V \approx 20 \text{ m/s}$
Lens length	$L pprox 40 \ { m cm}$
Time of flight of the lens	$t_{fl} = 20 \text{ ms}$
Repetition period	T = 200 ms
Magnetic field	B = 1.5 T

Most probable conception of UCN source @ periodic pulsed reactor

Pulsed valve

As a valve it is considered to use a gradient spin flipper, located in the area of decreasing of the flipper-decelerator field. Approximately in the 0.1-0.2T field

- Spin of polarised neutrons stored in the trap is oriented in such a way that the magnetic field of the flipper-decelerator is a barrier for them
- The high frequency of the flipper is applied only during the time of the arrival of the bunch. During this time, it passes neutrons in both directions

Liquid H₂ converter

Designed by A.Yu. Muzychka

Neutron density in a spherical UCN trap (liquid H₂ converter)

Designed by A.Yu. Muzychka

For more effective converter, like solid D₂, the neutron density can be increased by 30 times

Thanks for the discussions to V.N. Shvetsov, E.V. Lychagin, A. Yu. Muzychka, A.N. Chernikov, S.V. Gurskiy, S.V. Mironov and V.I. Bodnarchuk.

Special thanks to the staff of SuperOx company K.A. Baburin and V.I. Shcherbakov.

Thank you for your attention!!!

Parameters and results of calculation

The boundary velocity of the neutron guide	5.9 m/s
Correlation length of the roughness	37 nm
The boundary velocity of the trap	6.9
Neutron guide transmission (NiV guide, losses only due to roughness)	0.78
Coefficient of losses in material the trap	3×10 ⁻⁵
Velocity aperture of the lens	3.75 - 5.5 m/s
Pulse repetition period	200 ms
Pulse duration at the entrance to the trap	7-15 ms
Flux of thermal neutrons in the converter area	2×10 ¹² n/cm ² s
UCN flux (V<6.9 m/s) at a temperature of the spectrum of 400 K and G=1	14 n/cm²s
The fraction of the neutron flux captured by the neutron guide	0.62
The fraction of the flux transmitted by the lens	0.34
Full efficiency of the flux transmission without taking into account absorption in the neutron guide and pulse broadening due to the guide waviness	0.78×0.62×0.34×0.5=0.08

Pulse source and UCN pumping in a trap

UCN trap Gate UCN Source

 $\gamma \rightarrow 10^2 \div 10^3$

F.Shapiro, 1972

 γ is gain factor which is ratio of pulse flux density accumulating in trap to flux density accumulating in trap from stationary source of average power

Stationary gradient field – 20T superconducting solenoid

Z, мм

В, Тл

Time structure of the beam at the entrance to the UCN trap

Assumptions:

- the deceleration time is the same for all neutrons
- converters and transport conditions are identical

Neutron rebunching – magneto-resonant change of a neutron energy

Available ELSEVIER P

Physics of Fundamental Symmetries and Interactions - PSI2010

Longitudinal-gradient magnet for time focusing of ultra-cold neutrons

Y. Arimoto^a, T. Yoshioka^a, H. M. Shimizu^a, K. Mishima^a, T. Ino^a, K. Taketani^a, S. Muto^a, M. Kitaguchi^b, S. Imajo^c, Y. Iwashita^d, S. Yamashita^e, Y. Kamiya^e, A. Yoshimi^f, K. Asahi^g, T. Shima^h, K. Sakaiⁱ

Principle of Rebuncher

PHYSICAL REVIEW A 86, 023843 (2012)

Demonstration of focusing by a neutron accelerator

Yasushi Arimoto High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

Peter Gertenbort Institut Laue-Langevin, Boîte Postale 156, F-38042 Grenoble Cedex 9, France

Sohei Imajo Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan

-- --- ---

FIG. 2. Experimental setup. The neutron accelerator is installed in the middle of the guide tube. The rf and data acquisition systems are synchronized with the shutter operation.

Time lens to minimise the bunch duration at the Decelerator

Time lens to minimise the bunch duration at the Decelerator

! Problem of deceleration times dispersion still remains

Time lens to compensate deceleration times dispersion and to minimise bunch duration at the trap entrance

Main parameters of the source

1.	Converter	Undefined
3	Channel length	15 m
4	Diameter of the neutron guide	8 cm (limited by the diameter of the "warm" area of the flipper-decelerator)
5	Flipper-decelerator	Adiabatic
6	Magnetic system of the flipper-decelerator	Superconducting solenoid with a magnetic field of 15T
7	High frequency resonator	Birdcage type resonator with a frequency of 430 Mhz and a Q-factor of about 500
8	Inverting lens	Neil-Rauch type lens with a magnetic field of 1.5T
9	Pulsed valve	Adiabatic (?) spin flipper in the residual field 0.1-0.2T of the flipper-decelerator
10	Storage volume	The size is not defined. Most likely with a DLC coating
11	Duration of the bunch of "useful" neutrons at the entrance to the flipper-decelerator	T1. It is determined by the length of the channel, the value of the magnetic field of the flipper- decelerator and the spectrum of stored UCNs
12	The dispersion of the deceleration time	T2
13	Duration of the bunch at the trap entrance	The goal value is 10 ms. Determined by the time difference T2-T1

Problems

- 1. The choice of a converter and, possibly, a pre-moderator.
- 2. The problem of neutron transport with conservation of the longitudinal velocity component. The problem of waviness.
- 3. A trap with a low probability of loss and depolarization
- 4. Optimisation of the flipper in order to reduce the deceleration time dispersion and, as a consequence, the duration of the bunch

International Seminar on Interaction of Neutrons with Nuclei

To the UCN source at periodic **pulsed reactor**

G.V. Kulin, A.I. Frank, V.A. Kurylev, A.A. Popov, M.A. Zakharov

isinn-30

JINR

April 14 - 18, 2024

Sharm **El-Sheikh**

Egypt

