The 30th International Seminar on Interaction of Neutrons with Nuclei (ISINN-30)

Verification of an available cross-section library for neutron interaction with solid deuterium using Monte Carlo simulation

Pham K. T.*, Nezvanov A.Yu., Muzychka A.Yu.

*PhD student Landau Phystech-School of Physics and Research, Moscow Institute of Physics and Technology (MIPT) Email: kham.kt@phystech.edu

South Sinai Governorate, 14 - 18 April 2024

Ultra Cold Neutrons

UCNs are neutrons whose energy is so low that they are reflected under any angle of incidence and can be contained in traps (a)

Type of neutron	E(ev)	Т (К)	Λ (Å)	V (m/s)
Ultra cold	< 10 ⁻⁷	≈(<) mK	> 800	< 5
Very cold	10 ⁻⁷ - 10 ⁻⁴	10 ⁻² - 10	800 - 30	5 - 130
Cold	(0.1 - 10) x 10 ⁻³	10 - 120	30 - 3	130 - 1320
Thermal	(10 - 100) x 10 ⁻³	120 - 1000	3 - 1	~ 1320 - 3950
Resonance	> 1		< 0.1	> 4 x 10 ⁴

Ref.: G.V. Kulin (ISINN-29). The concept of an UCN source for a periodic pulsed reactor (2023).

UCN

Sketch of UCN traps: (a) A material trap using a material reflector, (b) A magnetic trap.

Ref.: Oh-Sun Kwon (2005), Sogang University. Quasi-elastic scattering of ultracold neutrons (Dissertation).

(b)

Why UCNs are important tools?

- Search for the neutron electric dipole moment (EDM)
- Measurement of the neutron lifetime
- Measurement of angular correlation coefficients of neutron beta decay
- Search for neutron-antineutron oscillations
- Quantization of neutron sates in gravitational field and search for new interactions
- Non-stationary quantum mechanics and neutron optics

Neutron lifetime measurements Ref.: https://www.scientificamerican.com, modified

The history of neutron EDM limits Ref.: Abel, C.; et al. (2020)

Status of UCNs development in the world

Ref.: G.V. Kulin (ISINN-29). The concept of an UCN source for a periodic pulsed reactor (2023). *https://europeanspallationsource.se/about

Some published articles on low energy neutron sources

PTEP	Prog. Theor. Exp. Phys. 2016 , 013C02 (22 pages) DOI: 10.1093/ptep/ptv177	SciPost Phys. Proc. 5, 004 (2021)				
Pulsed ultra-cold neutro a Doppler shifter at J-PA S. Imajo ^{1,*} , K. Mishima ² , M. Kitaguchi ³ , Y T. Oda ⁶ , T. Ino ² , H. M. Shimizu ³ , S. Yamas	Nuclear Instruments and Me Contents Ii Nuclear Inst. and N ELSEVIER	- neutrons for particle physics				
REVIEW OF SCIENTIFI	Full Length Article An intense source of very cold neutrons nanodiamonds for the European Spalla	Check for updates 167				
Performance of the Los Alamos Na solid-deuterium ultra-cold neutron A. Saunders, ¹ M. Makela, ¹ Y. Bagdasarova, ¹ T. J. Bowles, ¹ B. Carr. ³ S. A. Currie, ¹ B. Filin	Nicola Rizzi ^a , Ben Folsom ^b , Mina Akhyani ^c , Mac Tomasz Bryś ^d , Amalia Chambon ^a , Valentin Czan Jose Ignacio Márquez Damián ^d , Valery Nesvizhe Stavros Samothrakitis ^h , Valentina Santoro ^d , Ha S Alan Takibayev ^d , Richard Wagner ^g , Luca Zanini	ons at the				
 K. P. Hickerson,³ R. E. Hill,¹ J. Hoagland,² S. Steve Lamoreaux,^{1,6} Chen-Yu Liu,⁷ J. Liu,^{3,8} M. P. Mendenhall,³ C. L. Morris,¹ R. N. Morte J. Ramsey,¹ R. Rios,¹³ A. Sallaska,⁴ S. J. Se W. E. Sondheim,¹ W. Teasdale,¹ A. R. Young and Yanping Xu² 	Hoedl, ⁴ A. T. Holley, ² G. Hogan, ¹ T. M. Ito, ^{1,3} R. R. Mammei, ⁹ J. Martin, ^{3,10} D. Melconian, ¹¹ ensen, ¹ R. W. Pattie, Jr., ² M. Pitt, ⁹ B. Plaster, ¹² sestrom, ¹ E. I. Sharapov, ¹⁴ S. Sjue, ^{1,4} J, ² B. VornDick, ² R. B. Vogelaar, ⁹ Z. Wang, ¹	Andreas Frei Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) 85748 Garching, Germany E-mail: andreas.frei@tum.de), Technical University of Munich, Lichtenbergstr. 1,			

Some published articles on low energy neutron sources

	Nuclear Instruments and Methods in Physics Research A 823 (2016) 47–55	
FISEVIER	Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A iournal homepage: www.elsevier.com/locate/nima	On
ELSEVIER	Journal noniepage. www.elseviel.com/locate/initia	-
UCN source reactor	es at external beams of thermal neutrons. An example of PIK ([] GrossMarl	k
E.V. Lychagin [®] M.S. Onegin ^b ,	^a , V.A. Mityukhlyaev ^b , A.Yu. Muzychka ^a , G.V. Nekhaev ^a , V.V. Nesvizhevsky ^{c,} *, , E.I. Sharapov ^a , A.V. Strelkov ^a	
Technical Ph	nucios 2022 Val 67 No 6	Frank
Technical Fil	ysics, 2022, Vol. 07, No. 0	- On the
Superflu	id helium based ultracold neutron source for the PIK reactor	r Th consid based
St. Petersburg e-mail: serebro	Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia ov_ap@pnpi.nrcki.ru	trap fo pulsed
Journal of Neutron DOI 10.3233/JNR- IOS Press	Research 24 (2022) 145–166 145 220007	Th Physic
Devel	opment of UCN sources at PNPI	
Anatolii Sereb Petersburg Nuc E-mail: serebro	prov * and Vitaliy Lyamkin lear Physics Institute, Gatchina, Russia w ap@pnpi.nrcki.ru	

the new possibility of pulse accumulation of UCN in a trap A.I. Frank^{a,1}, G.V. Kulin^{a,2}, M.A. Zakharov^a,

^a Joint Institute for Nuclear Research, Dubna, Russia

A. I., Kulin G. V., Rebrova N. V., Zakharov M. A. P3-2021-22 Possibility of Creating a UCN Source on a Periodic Pulsed Reactor

e possibility of creating a UCN source on a periodic pulsed reactor is ered. It is shown that the implementation of the principle of time focusing, on nonstationary neutron diffraction, and the idea of pulse filling of the or UCN allows us to create a sufficiently intense source of UCN on a reactor of a moderate power.

e investigation has been performed at the Frank Laboratory of Neutron es, JINR.

Some tasks on the concept of the source

As part of the work on the concept of the source, priorities will be:

- Analysis of possible candidate materials for use as UCN converter, considering the specifics of the planned source.
- Modeling of the converter, calculation of the UCN output from it and optimization of its geometry.
- Participation in the formation of technical requirements and in the design of a UCN converter unit.

Evaluated nuclear data and Nuclear data processing systems

PHITS and ACE format

Particle and Heavy Ion Transport code System

Capability

Transport and collision of nearly all particles over wide energy rangeusing Monte Carlo methodneutron, proton, ions,
electron, photon etc10-5 eV to 1 TeV/n

All-in-one-Package

All contents of PHITS (source files, binary, data libraries, graphic utility etc.) are fully integrated in one package

Available in free of charge by submitting application form via PHITS website

A Compact ENDF (ACE) Format Specification

Jeremy Lloyd Conlin (editor)

Los Alamos National Laboratory

Contributors: Jeremy Lloyd Conlin (Los Alamos National Laboratory) Paul Romano (Argonne National Laboratory)

Current version is only for continuous neutron and thermal scattering law (TSL) data

Map of Models Recommended to Use in PHITS

	Neutron	Proton, Pion (other hadrons)		Nucleus Muon		e⁻ / e⁺	Pho	oton
-	1 TeV			1 TeV/u				1 TeV
High	Intra-nuclea + I 3.0 GeV	ar cascade (JAM) Evaporation (GEM)		JAMQMD + GEM	Virtual Photo- Nuclear			Photo-
nergy →	Intra-nuclear c 200 MeV	ascade (INCL4.6) + Evaporation (GEM)	d t ³ He	Quantum Molecular Dynamics (JQMD)	JAM/ JQMD + GEM 200 MeV	EGS5 or **ETS	EGS5 or EPDL97	Nuclear JAM/ JQMD + GEM
Ш 	20 MeV *JE	20 MeV *JENDL-4.0/HE		+ GEM 10 MeV/u	ATIMA			+ JENDL +
*	Nuclear	1 MeV		Eneray loss	+ Original			NRF
Low	Data Library	1 keV ATIMA or **	keV ATIMA or **KURBUC/ITSART		Onginal	1 keV	1 keV	
	+ (EGM)	+ (EGM) *Only for facility de		n simulation	Muonic atom +	**ETS		
	0.01 meV		spic		Capture	1 meV]	

Nuclear Data Processing Code (NJOY2016)

Flow diagram of NJOY2016 processing for ACE format library construction

Ref.: K. Ouadie et al. / Nuclear Engineering and Technology 49 (2017) 1610e1616

1	2.0.1		100	01.710nc		ENDFB-V	II.1		
2	0.999167 2.	5301E-08 1	12/17/12	2 3					
3	The next tw	o lines an	re the f	first two	lines of	'old-style'	ACE.		
4	1001.80c	0.99916	67 2.53	301E-08	12/17/12				
5	H1 ENDF71x	(jlconlin)) Ref.	see jlcom	lin (ref	09/10/2012	10:00:53	3) n	mat 125
6	0	0.	0	0.	0	0.	0	0.	
7	0	0.	0	0.	0	0.	0	0.	
8	0	Ο.	0	0.	0	0.	0	0.	
9	0	0.	0	0.	0	0.	0	0.	
10	17969	1001	590	3	0	1	1	0	
11	0	1	1	0	0	0	0	0	
12	1	0	2951	2954	2957	2960	2963	4352	
13	4353	5644	5644	5644	6234	6235	6236	6244	
14	6245	6245	6246	16721	0	16722	0	0	
15	0	0	0	0	0	16723	16724	16725	
16	1.00000000	000E-11 1	1.031250	00000E-11	1.0625	50000000E-11	1.0937	'5000000I	E-11
17	1.125000000	000E-11 1	1.156250	00000E-11	1.1875	50000000E-11	1.2187	'5000000I	E-11
18	1.25000000	000E-11 1	1.281250	00000E-11	1.3125	50000000E-11	1.3437	'5000000I	E-11
19	1.37500000	000E-11 1	1.437500	00000E-11	1.5000	0000000E-11	1.5625	50000000E	E-11
20	1.62500000	000E-11 1	1.687500	00000E-11	1.7500	0000000E-11	1.8125	60000000	E-11
21	1.87500000	000E-11 1	1.937500	00000E-11	2.0000	0000000E-11	2.0937	'5000000I	E-11
22	2.187500000	000E-11 2	2.281250	00000E-11	2.3750	0000000E-11	2.4687	'5000000I	E-11
23	2.56250000	000E-11 2	2.656250	00000E-11	2.7500	0000000E-11	2.8437	'5000000I	E-11
24	2.937500000	000E-11 3	3.031250	00000E-11	3.1250	0000000E-11	3.2187	'5000000I	E-11
25	3.312500000	00E-11 3	3.406250	00000E-11	3.5000	0000000E-11	3.5937	'5000000E	E-11

ACE Header with beginning of XSS array for ¹H

Ref.: Conlin, Jeremy Lloyd, Romano, Paul (2019). A Compact ENDF (ACE) Format Specification

Theoretical basic for the sD_2 TLS library (1/3)

It is based on the neutron scattering kernel for sD_2 proposed by Granada J.R.

The main characteristics of Granada's model including:

- The lattice's density of states
- The Young-Koppel quantum treatment of the rotations
- The internal molecular vibrations
- The elastic processes involving coherent incoherent contributions are and fully described, as are the spin-correlation effects

EPL, 86 (2009) 66007 doi: 10.1209/0295-5075/86/66007 June 2009

www.epljournal.org

Neutron scattering kernel for solid deuterium

J. R. GRANADA^(a)

Centro Atómico Bariloche and Instituto Balseiro. Comisión Nacional de Energía Atómica 8400 S.C. de Bariloche (RN), Argentina

$$\begin{split} S(\mathbf{Q},\omega) &= \frac{1}{2\pi\hbar} \int\limits_{-\infty}^{\infty} \mathrm{d}t \, e^{-i\omega t} \\ &\times \left\langle \sum_{l,l'} \sum_{\nu,\nu'} \overline{a_{l\nu}^* a_{l'\nu'}} \exp\left\{-i\mathbf{Q} \cdot \mathbf{R}_{l\nu}(0)\right\} \exp\left\{i\mathbf{Q} \cdot \mathbf{R}_{l'\nu'}(t)\right\} \right\rangle, \end{split}$$

The intermediate scattering function $\chi(Q,t)$

Theoretical basic for the sD₂ TLS library (2/3)

$$\chi(\mathbf{Q},t) = 4b_c^2 j_0^2 (Qr/2) \{I(\mathbf{Q},t) - I_s(\mathbf{Q},t)\}$$

$$+ v(\mathbf{Q},t) \cdot I_s(\mathbf{Q},t),$$

$$\chi(\mathbf{Q},t) = \chi(\mathbf{Q},0) + \chi(\mathbf{Q},t\neq 0),$$

$$\chi(\mathbf{Q},t) = \chi(\mathbf{Q},0) + \chi(\mathbf{Q},t\neq 0),$$

$$\chi(\mathbf{Q},t) = \chi(\mathbf{Q},0) + \chi(\mathbf{Q},t\neq 0),$$

$$I_s(\mathbf{Q},0) = 1$$

$$I(\mathbf{Q},0) = [\mathbf{F}(\mathbf{Q},0)]^{2*}$$

$$\chi^{el}(\mathbf{Q},0) = \{4 b_c^2 j_0^2 (Qr/2) | F(\mathbf{Q})|^2 + v(\mathbf{Q},0) - u(\mathbf{Q})\}$$

$$\times \chi^{vib}(\mathbf{Q},0).$$

$$Y(\mathbf{Q},0) = 2 [b_c^2 + b_i^2] + [b_c^2 + 1/2 b_i^2] j_0(Qd),$$

$$Y(\mathbf{Q},0) = 2 [b_c^2 + b_i^2] + [b_c^2 - b_i^2] j_0(Qd),$$

$$Y(\mathbf{Q},0) = 4b_c^2 j_0^2 (Qr/2) | F(\mathbf{Q})|^2 \chi^{vib}(\mathbf{Q},0)$$

 $+2(1+\alpha) b_i^2 \chi^{vib}(\mathbf{Q}, 0)$ (Elastic Incoherent)

d (= 0.74 Å) being the interatomic distance \mathbf{j}_0 the spherical Bessel function of order zero

|F(Q,0)| is the lattice structure factor corresponding to the arrangement of molecular centers

v(Q,t) contains all the complexity associated to the molecular rotations with definite parity for each (ortho, para) molecular species

(Q,t) contains the contributions due to all molecular centers in the system

u(Q) is the molecular structure factor

(vib(Q,0) is the Debye-Waller factor

α = 1/4 for o-D2,
 -1/2 for p-D2, and
 0 for n-D2

13

Minor approximation neglecting small energydependent second-order effects due to spin and structural correlations

Theoretical basic for the sD₂ TLS library (3/3)

The incoherent approximation for the inelastic term

$$I(\mathbf{Q}, t \neq 0) \cong I_s(\mathbf{Q}, t \neq 0)$$
 (5)

$$\chi^{inel}(\mathbf{Q},t) = v(\mathbf{Q},t) \cdot I_s(\mathbf{Q},t) \cdot \chi^{vib}(\mathbf{Q},t) \quad (6)$$

v(Q,t) contains all the complexity associated to <u>the molecular rotations</u> with definite parity for each (ortho, para) molecular species.

 $I_s(Q,t)$ is the self-contribution of the molecular centers determined by the dynamics of the lattice in the case of solid systems

Simulation results and comparison (1/4)

 $= \frac{\ln(I_0/I)}{\rho d} \begin{cases} I_0 \text{ and } I \text{ are the transmitted intensities} \\ for the empty and full sample cells, \\ \rho: the density, and \\ d: the thickness of the sample cell. \end{cases}$

x [cm]

Simulation results and comparison (2/4)

10 1, 10 - 1, 10 - 1	no.	= 1	, ie =	1, iy =	: 1
----------------------	-----	-----	--------	---------	-----

Simulation configuration							
Material	(Ortho) sD ₂						
Source type	Point isotropic						
Sphere radius (cm)	5						
Type of particle	Neutron						
Initial energy (meV)	20.4						
Temperature (K)	5						

	sod2.05t	1.996800	4.308	37E-10 (08/13/21			
*	solid ortho	o-deuterium	@ 5K	- Europea	an Spallation	Source	*	mat 128
	1002	0.	0	0.	0	0.	0	0.
	0	0.	0	0.	0	0.	0	0.
	0	0.	0	0.	0	0.	0	0.
L.	0	0.	0	0.	0	0.	0	0.
	4437672	3	65	200	5	-1	2	63
	0	0	0	0	0	0	0	0
	1	111	220	4430411	4430445	0 4	430478	4430588
	4430697	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
		109	1.0000)0000000E-	-11 1.78000	000000E	2-11 2	.5000000000E-11
	3.5000000)000E-11	5.0000)0000000E-	-11 7.00000	000000E	2-11 1	.0000000000E-10
	1.2600000)000E-10	1.6000)0000000E-	-10 2.00000	000000E	2-10 2	.5300000000E-10
	2.9700000)000E-10	3.5000)0000000E-	-10 4.20000	000000E	2-10 5	.0600000000E-10
	6.15000000)000E-10	7.5000)0000000E-	-10 8.70000	000000E	2-10 1	.0120000000E-09
	1.23000000)000E-09	1.5000)0000000E-	-09 1.80000	00000E	2-09 2	.0300000000E-09
	2.27700000)000E-09	2.6000)0000000E-	-09 3.00000	000000E	1-09 3	.5000000000E-09
	4.04800000)000E-09	4.5000)0000000E-	-09 5.00000	000000E	2-09 5	.6000000000E-09
	6.32500000)000E-09	7.2000)0000000E-	-09 8.10000	000000E	2-09 9	.1080000000E-09
	1.0000000	000E-08	1.0630	00000000E-	-08 1.15000	000000E	2-08 1	.23970000000E-08
	1.33000000	000E-08	1.4170)0000000E-	-08 1.50000	000000E	2-08 1	.61920000000E-08
	1.82000000	000E-08	1.9900	00000000E-	-08 2.04930	000000E	2-08 2	.1500000000E-08
	2.2800000)000E-08	2.5300)0000000E-	-08 2.80000	000000E	2-08 3	.06130000000E-08
	3.3800000	000E-08	3.6500)0000000E-	-08 3.95000	000000E	2-08 4	.27570000000E-08
	4.65000000	000E-08	5.0000)0000000E-	-08 5.69250	000000E	2-08 6	.2500000000E-08
	6.9000000	000E-08	7.5000)0000000E-	-08 8.19720	000000E	2-08 9	.0000000000E-08
	9.6000000	000E-08	1.0350)0000000E-	-07 1.11573	000000E	2-07 1	.20000000000E-07
	1.28000000)000E-07	1.3550)0000000E-	-07 1.45728	000000E	2-07 1	.6000000000E-07

Simulation results and comparison (3/4)

solid D₂ at T = 7 K. Comparison of two orthoconcentrations C₀ = 66.7% (\Box) and C₀ = 98% (\circ). Initial energy of the thermal neutrons is E₀ = 20.4 meV.

A comparison between simulation result with A. Frei's result.

Note: The TLS library used for the simulation was developed for pure ortho- D_2 at 5 K

Simulation results and comparison (4/4)

E ₀ (meV)	Velocities (m/s)	Energy (MeV)	VCN production cross section (mb)
20.4	50	1.3068E-10	1.6991E-01
	75	2.9402E-10	3.0807E-01
	100	5.2270E-10	5.4464E-01
	125	8.1672E-10	7.9014E-01
	150	1.1761E-09	1.0660E+00
	175	1.6008E-09	1.4058E+00
	200	2.0908E-09	

VCN production crosssection approximation: $\sigma_{VCN} = \sigma_{UCN} \left(\frac{V_{VCN}}{V_{UCN}}\right)^3$

 $V_{UCN} = 5.3567$ m/s (150 neV); $\sigma_{UCN} = 0.75E-7$ b. [0, V_{VCN}] – the VCN production range.

Next tasks

2

3

Study and generate multi-group cross section (MGXS) libraries for converter materials using NJOY or FRENDY

Perform assessments on the applicability of new generated libraries through simulation calculation using GEANT4 and compare with published results

Calculate cross section for the generation of UCNs

Conclusion

- Low-energy neutrons have been an extremely productive tool for the investigation of fundamental interactions
- Many projects and researches on the development of lowenergy neutron sources are being implemented actively in the world
- The limitation applies of the available library to the range of neutron energies from 10⁻² to 10³ meV was reconfirmed
- The investigation on the generation of VCN with velocities from 50 - 200 m/s using the available library was conducted
- Some tasks were planned for the further research

THANK YOU FOR YOUR ATTENTION!