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Low energy neutrons: what & why?

Very cold neutrons (VCN):
» the typical wavelengths are 2.5-60 nm;
» the velocities are 20-160 m/s;

« the energies are 0.25-130 peV;
« the temperatures are 3x10-3-1.55 K.

The VCN advantages are:

Reflectivity

long time of observation;

larger phase shift;

large coherent length;

large capture cross-section = bigger contrast;
structure analysis of large molecular complexes;
large angles of reflections from mirrors; etc.

Neutron techniques Fundamental physics

The main disadvantage is a low flux intensity!
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Workshops dedicated to the VCN applications and prospects:

21-24 August 2005, Argonne National Laboratory, USA. URL
13-14 February 2006, Paul Scherrer Institute, Switzerland.
27-28 April 2016, Oak Ridge National Laboratory, USA. URL
2-4 February 2022, European Spallation Source, Sweden. URL
9-10 May 2023, European Spallation Source, Sweden. URL
8-11 April 2024, Institute of Nuclear Physics, Kazakhstan. URL
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https://conference.sns.gov/event/18/images/2755-Workshop_on_Applications_of_a_Very_Cold_Neutron_Source_-_ANL.pdf
https://conference.sns.gov/event/18/
https://indico.esss.lu.se/event/2810/
https://indico.esss.lu.se/event/3195/registrations/566/
https://indico.inp.kz/event/2/

Reflectors of very cold neutrons

Criteria for the VCN reflector are minimum losses and maximum reflection.

Detonation nanodiamonds (DND) are the perfect candidate!

PIA¥: Ry ~ 0.271

Ropt (1) = 0.7 — 4.3 nm,
A € [26,160] A
or v € [25,150] m/s

size distribution;
bgsc. = 6.65 fm;
&s. = 5.55b;
obs = 3.5mb;

Ot sc. = 0 (T = 0);
pDiamond

PREF ~ 95%

Positive Factors:

~ 3.5 g/cm3.

0
0 2 4 6 8 10
Nanodiamond radius R, nm

Negative Factors:
~10 at. % of hydrogen,
ol . =0.33b;

neutron
Ofnsc. = 108 £ 2 b; capture
other impurities
<0.15at. %
neutron
______ activation
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Neutron Transport Equation

Artem’ev V.A. // Vopr. At. Nauk. Tekh., Ser. Fiz. Yad. Reakt., Vol. 1-2, P. 7-12 (2003).
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+ (5 Q) + 2D (Q - Q)] + g(r.Q.t)

coh

+ losses

Equation
Solutions

The
approximation of
small scattering
angles 12

The Monte Carlo
method

The diffusion
approximation '
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https://www.elibrary.ru/item.asp?id=16524244
https://www.researchgate.net/publication/337908795_Solution_of_the_kinetic_equation_of_the_radiation_transport_inside_a_nanodispersed_absorbing_medium_within_the_approximation_of_small_scattering_angles
https://www.researchgate.net/publication/333660244_Peculiarities_of_interaction_and_propagation_of_low-energy_neutrons_in_nano-dispersed_media_the_example_of_diamond_nano-powder

Models of nanopowder structure and neutron transport
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scattering cross-section.
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Model s self-consistency and ver|f|cat|on
s(q)
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Measured intensity for the DND sample.

Self-consistency of the model
was checked by variation of:

number of discrete points;
linear/log uniformity scales;
etc.

variance o of the initial distribution;
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— Calculation
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f(r) — a fraction distribution of
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Model’s self-consistency and verification:

Fluorinated nanodiamonds

10"

102

Absolutized SANS (F-DNDs, 0.39 g/cm?®)

Experiment:
m 6A 13A

= 10A = 16A
Simulation:

— BA 13A

— 10A —16A

10
0,01

I (em™)

F-DNDs SANS, 0.39 g/cm?®

Experiment:
m GA 13A

= 10A m 16A
Simulation:

— 6A —13A
— 10A —16A
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Model’s self-consistency and verification:

Deagglomerated fluorinated nanodiamonds
Absolutized SANS, DND-F_DO01, 0.56 g;‘cm3

10° 4

10% 5

I(Q) (cm™)

10° 5

102 -

— SANS was measured for a layer

m 6A exp

= 10A exp
BA sim

— 10A sim

thickness of 1 mm.
— The bulk density of ~0.2 g/cm3 is OK.

— The bulk density of >0.5 g/cm3 is not OK.

One has to measure

a thinner layer of a nanodiamond powder
OR

a less denser nanodiamond powder

OR

to use a shorter wavelength of neutrons

10'
0.001

gy for development the corresponding model.
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Deagglomeration: nanoparticle cluster breaking

distributions of the fluorinated F-DND (dotted)
and the deagglomerated FD-DND (solid).
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Size separation of nanopartlcles
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Conclusions

.........
......

— The MC numerical solution of the neutron transport

equation was implemented.

— The approach for extrapolating the experimental results

and extracting the structural parameters was developed.

— The model was validated and used to simulate the

neutron albedo for different geometries.
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Thank you all
for your kind attention!
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