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 Introduction 
Random walk in the mathematical statistics  was introduced by Karl Pearson in 1905 [1], as 

sequences of ‘n’ steps (of a some person) taken in random directions of space. The 
directions and the length of each step have to be chosen from a know probability 
distributions, and  are independent  between steps. The problem to solve is to find the 
probability of “landing” at a required  spot x in the space after the number n of steps. The n 
and x are random variables. The random walk formalism assumes the probabilistic 
description of a physical process. 

Neutron slowing down  was discovered  by the E. Fermi’s group in 1934 [2] when they 
found the increasing radioactivity of their samples with the  fast neutron source placed into 
the paraffin  (the protons media) cube. At each collision neutron loses a part of its kinetic 
energy, or even all the energy, by transferring it to protons.  The random variables in 
question are the neutron energies Ei during the neutron flights between subsequent 
collisions and the number of collisions, ‘n’, producing  a final required neutron energy En. 
 
[1] K. Pearson 1905. The problem of the Random Walk. Nature 72 no.1865:294, no.1867:342. 
[2]. E. Fermi, E. Amaldi, B. Pontecorvo, F. Rasetti, E. Segre. 1934. Azione di sostanze idrogenato sulls 
radioactivita provocato di neutroni I.  Ric. Scient. 5(2):280-283. 
 



Poster overview 

•    It appears, that the names of Pierre-Simon Laplace, Karl Pearson,  Gian-Carlo Wick, 
Enrico Fermi, and Paul Langevin can be related (‘bounded’) to the historic problem of 
random work in the statistical theory and to the problem of fast neutron slowing down in 
the neutron physics. The ‘bound’ comes from developing the exact mathematical 
expressions for the probability density of the sum of n independent random variables.  

•     The most problematic were difficulties of getting the result in the form of an 
analytical formula for energy distribution of neutrons after a fixed number n of impacts 
with protons.  

•     The different approaches  of the great physicists are reviewed and  compared. The 
neutron impacts with nuclei are treated probabilistically, as in the random walk problem. 
The final analytical expressions, when available, have been found to be  identical.  

•     The author’s simplest approach to deduce analytical formula for the probability 
density of the sum of n logarithmic random variables is shown also, for the pedagogical 
reasons, for students interested in the neutron physics. 



Motivation writing this historical review: 



        Gian-Carlo Wick analytical formula 

−   G.C. Wick explained in his letter to the Phys. Rev.  editor that E. Fermi had used, as a 
random variable , the quantity x, namely the logarithmic energy change ( ‘decrement’)  
x = ln(Eo /En ). Here  Eo is the neutron source energy and  En is the neutron energy after 
the subsequent  n  collisions. He stated (but not proofed), that it is possible to obtain 
the following analytical  formula for the probability distribution function: 
            
                                                  pn(x) = [xn-1/(n-1)!] e-x           (1) 
 
−   The expression p(x)dx  means the probability that the logarithmic variable x lies 
between values x and x + dx. The setting n=1 confirms the Fermi’s ‘1/e statement’ for 
the logarithmic energy change after one neuron-proton collision.  
−  With this distribution and its known variance, one can obtains with ‘initial’ energy  of 
E0 = 2 MeV and the ‘final’ energy  of  En = 1 eV,  
−   the following values:   <n> = 15.5+- 3.8,  -- the average number n, (to compare with 
the ‘arithmetic’ average  <<n>> = 20.9 ),    
−   npeak =14.5  -- the most probable number of collisions to reduce neutron  energy to 
the value of 1 eV. 
 



Laplace and Breit-Condon formulas 



Langevin’s and author’s approaches  
Langevin started to work on the moderation of neutrons in media composed by nuclei 
heavier then hydrogen, following the Joliot-Curie’s suggestion in 1940, when the German 
occupants imprisoned him in Paris. He successfully concluded the work by the 1941-1942 
publications submitted from the town of Troyes, where the Gestapo put him under the 
surveillance. As did other physicists, Langevin calculated the probability for a fast neutron 
to reduce its energy to E, E+dE by collisions with any media nuclei after one, two, three, 
or any number n of successive impacts. Starting from an neutron energy ratio C=E/Eo as a 
random variable, he transformed it to the logarithmic variable: x=ln(Eo/E) and obtained, 
for the probability  of x,  the series solution analogical to the Laplace’s one. This was done 
after first developing the original approach to represent and calculate  probabilities, 
which he named as the “geometrical graphical method”. The numerical results were 
presented in several figures. The Langevin’s publications are: 

 
• Paul Langevin. 1942. Sur les chocs entre neutrons rapides et noyaux de masse quelconque. 

Ann. Phys, Paris, 17:303-317.  

• Paul Langevin. 1942. Compt. Rendes Acad. Sci., Paris, v. 214, pages 517, 867, 889. 

 

The author’s pedagogical derivation of the analytical formula for the probability 
density of the sum of n logarithmic random variables, using the Induction method with 
initial convolutions, is presented in Appendix of the full text of the E. Sharapov’s poster. 

 
 



Conclusion  

 •    Today it is known, that even though the transport theory dominates discussions 
related  to neutron slowing down, the arguments that similar results can be 
obtained with the probabilistic description, continue to appear. C.S. Barnett [7] 
showed recently that first and higher order moments of distribution function, 
calculated with the random work formalism, gave the correct results.  
As recently as 2018, B. Ganapol et al. [8] used the probabilistic neutron slowing 
down model as a mathematical model for the entropy in physics.  
 
   •    The final conclusion is, that the past and the presence are always bound in 
physics, which may lead to an unforeseen successes.               Thank you. 
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