

Operation and experimental Introduction of the CSNS Back-n

Ruirui Fan on behalf of Back-n collaboration

白光中子实验装置 Back-n

China Spallation Neutron Source

The China Spallation Neutron Source, located in Dongguan city, near Hong Kong, was running from August 28, 2017, with a budget of 2.3 billion yuan. It consists of a 1.6 GeV proton accelerator with a repetition rate of 25 Hz and a beam power of 100 kW, will be 500 kW in next six years.

April 15, 2024

Back-n

Shutter	Coll#1	Coll#2	ES#1 spot	ES#1 flux	ES#2 spot	ES#2 flux
(mm)	(mm)	(mm)	(mm)	$(n/cm^2/s)$	(mm)	$(n/cm^2/s)$
Ф3	Φ15	Φ40	Ф15	1.27E5	Ф20	4.58E4
Φ12	Φ15	Φ40	Ф20	2.20E6	Ф30	7.81E5
Φ50	Φ50	Φ58	Ф50	4.33E7	Ф60	1.36E7
78×62	76×76	90×90	75×50	5.98E7	90×90	2.18E7

The back-streaming neutrons are leading to the Back-n tunnel, which has a long flight distance for the neutron time-of-flight method. Two end stations ES#1 and ES#2 are constructed for different nuclear data measurements. The ES#1 has a distance of about 55 m, and ES#2 is about 70 m from the target. Different sets of beam spots, collimator apertures and neutron fluxes at Back-n at 100 kW in proton beam power can be found in table.

1. 2017 JINST 12 P07022

April 15, 2024

2. Eur. Phys. J. A (2019) 55: 115

ISINN-30 @ Sharm El-Sheikh, Egypt

The white neutron energy range

The Back-n has a wide neutron energy range from cold neutron (0.4 meV) to 300 MeV. To avoid the frame overlap, a Cadmium filter is employed at the upstream end of the beamline (window).

Thermal neutrons or epithermal neutrons are the reference for lots of experiments, and some important parameters such as neutron polarization need to be calibrated using thermal neutrons.

Changing the beam filter 1 mm Cadmium \rightarrow 1.7 mm boron nitride (BN), can get a lower cutoff energy.

The neutron beam time structure of Back-n

Double bunches time structure

The accelerator normally works in double bunch mode, with a time interval of 410 ns between two bunch of protons. The double bunch structure leads to a large time-of-flight measurement error.

Double-bunch unfolding methods

A Bayesian unfolding method is developed for diverse types of experiments performed in the double-bunch mode at Back-n. The experiment data from single bunch mode and the unfolded result from the double bunch mode experiment match well. The unfolding method has been used in most Back-n experiments.

H. Yi et al 2020 JINST 15 P03026

Bunch merge research

The utilization of the combined system of the fundamental and second RF cavities makes it possible to perform a bunch merging process before beam extraction to improve (double) the proton intensity in the single bunch mode for the Back-n white neutron experiments.*

*PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 024201 (2023)

ISINN-30 @ Sharm El-Sheikh, Egypt

First bunch merge experiment attempt in May 30th 2023

Back-n beam monitor

Two monitors are employed:

- Proton beam monitor (Fast Current Transformer)
- Li-Si monitor (⁶LiF foil and silicon detectors)

Nuclear Inst. and Methods in Physics Research, A 946 (2019) 162497

Comparison of Li-Si monitor measurements with proton current intensity monitor measurements

Back-n shielding & background measurement

Neutron and γ background measurements of the experimental halls at the CSNS back-streaming white neutron source, NIMA Volume 980, 11 November 2020, 164506

April 15, 2024

核数据测量探测器 Detectors @ Back-n

The beam diagnostics and several detector systems, for example the Fission chamber, the light charged particle detector array, the C6D6 scintillation detectors and the camera system were developed before the beamline Li-Si beam established and serviced most of the experiments at flux monitor Back-n.

Several ambitious developments, for example, the multipurpose time projection chamber (MTPC), the radiation resistant semiconductor detectors, the Gamma-ray total absorption facility (GTAF-II) and the neutron-sensitive microchannel plate detector (B-MCP) are in progress for future experiments.

Proton beam

ES#1

The detectors are not fixed with any experiment station:

Light charged Particle

Detector Array

 $C_{6}D_{6}$

Dump

Gamma-ray total

absorption facility

ES#2_

Collimator#1

- Fission ionization chamber
- Micromegas

Collimator#

- Multi-layer fission ionization chamber
- Multi-purpose Time Projection Chamber
- Radiation-resistant semiconductor detector
- Gated CMOS camera
- Neutron sensitive Micro-Channel-Plate

Ruirui, F., Qiang, L., Jie, B. et al. Radiat Detect Technol *Methods* **7**, 171–191 (2023).

target

shutter Neutron beam

15°

GTAF (40 BaF₂ detector array)

GTAF(Gamma Total Absorption Facility) Prompt gamma measurement, neutron time of flight method(neutron energy)

Cascade gamma matches measurements— —Multiplicity and Total Energy of Cascade

gamma can be measured

The fission chamber

The fission ionization chamber detector measures the fission fragments generated through the reaction between the fission material (²³⁵U, ²³⁸U) and neutrons, and records the energy of the neutrons by measuring their flight time.

Nuclear Inst. and Methods in Physics Research, A 940 (2019) 486-491

April 15, 2024

15

Δ E- E detector array (LPDA)

The photo of LPDA

The LPMWPC (ΔE) vs Si-PIN (E) spectrum and Si-PIN (ΔE) vs CsI(Tl) (E) spectrum

The LPDA is divided into two modules, each covering an angle of 23.5-90 degrees. It includes 8 sets of LPMWPC+Si+CsI detector telescopes, with a total of 48 channels. It was completed in June 2020.

Kang Sun et al 2023 JINST 18 P04004

Back-n multipurpose TPC

Time Projection Chamber, which is a type of detector that records the three-dimensional trajectory of charged particles. The design of the TPC detector for the white neutron beam line started in 2019 and took 4 years to complete. The measurement of the neutron reaction cross section of ⁶Li has been completed at beginning of last year.

- 1. Z. Chen *et al* 2022 *JINST* **17** P05032
- 2. NIMA 1039 (2022) 16715

DAQ

Common electronics system overall architecture

Common electronics: it consists of an analog conditioning module (SCM), a trigger clock module (TCM), and a waveform digitization module (FDM). resolution:12 Bit Sample rate: 1 GHz PXIe based, more than 60 channels.

electronics photos

Review of Scientific Instruments **89**, 013511 (2018); doi: 10.1063/1.5006346 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 7, JULY 2019

核数据测量实验 Nuclear data measurement

Nuclear data measurement experiments

Since 2018, we have measured the neutron reaction cross sections of more than 50 nuclides and will continue to measure at a rate of over 10 nuclides per year.

- Neutron capture
 - C₆D₆: ¹⁶⁹Tm, ¹⁹⁷Au, ⁵⁷Fe, ^{nat}Se, ⁸⁹Y, ^{nat}Er/¹⁶²Er, ²³²Th, ²³⁸U, ⁹³Nb, ^{nat}Cu, ^{nat}Lu, ^{113&115}In, ^{185&187}Re, ¹⁸¹Ta, ^{107&109}Ag, ¹⁶⁵Ho, ^{nat}Yb, ¹²⁷I, ¹³³Cs, ^{nat}Dy, ¹⁰³Rh
 - GTAF-II: ¹⁶⁹Tm, ⁹³Nb , ^{nat}Re, ^{nat}Xe, ^{nat}Sn, ¹²⁷I, ^{nat}La
- Total cross-section
 - ¹²C, ²⁷Al, ⁹Be, ⁷Li, ^{nat}Fe, ²⁰⁹Bi, ^{nat}Pb, ^{nat}Cr, ⁹Be, ¹⁶⁹Tm
- Fission cross-section
 - ²³⁵U, ²³⁸U, ²³⁶U, ²³⁹Pu, ²³²Th, ²³⁹Pu, ²³⁶U
- Light charged particle emission
 - LPDA: ⁶Li(n, x), ¹⁰B(n, x), ⁶³Ni, (n-d), ¹⁷O, (n-p), 12C(n,d), 12C(n,α) (13C cluster)
 - TPC: ¹²C, ¹⁴N, ⁶Li
- Inelastic cross-section (in-beam gamma)
 - ⁵⁶Fe (n, n'), ^{nat}Mo, ¹⁶O, ^{nat}Ru, ^{nat}Lu, ^{nat}Mo, ^{nat}Ti, ²⁰⁹Bi, ⁹⁰Zr, ⁵⁵Cr, ¹⁵⁵Eu, ¹⁷⁸Hf, ²³²Th

⁶Li(n, t) α , ¹⁰B(n, α)⁷Li cross section measurements

- $6Li(n, t)\alpha$, $10B(n, \alpha)7Li$ reaction cross-sections are widely used as standard cross-sections and require higher precision results, and $10B(n, \alpha)7Li$ reaction cross-sections are also important parameters required in BNCT (Boron Neutron Capture Therapy) research.
- $6Li(n, t)\alpha$, $10B(n, \alpha)7Li$ reaction differential cross-sectional measurement, data analysis to obtain high-precision results, which is the most systematic measurement results of this energy region in the world.

10-2

10-3

1.3 1.7

E. (MeV)

10⁻¹

 10^{0}

2.1 2.5

0.9

Huaiyong Bai et al 2020 Chinese Phys. C 44 014003 H. Jiang, et al., Chin. Phys. C 43 (12) (2019) 124002

Polarized neutron and nucleus reaction

As members of the NOPTREX collaboration, we conducted our first white neutron polarization experiment on Back-n in 2023 using an in-situ neutron polarization device. In the future, we will also utilize polarized white neutrons to carry out experiments that require polarized neutrons, in addition to the NOPTREX experiments.

Measurement of gamma decay properties of compound states of 176Lu and 177Lu

- > The aims of the experiment are
- ^{1Z6}Lu 5.21 eV resonance 1) to clarify influence of a collective rotation of the deformed nuclei on conservation of quantum number Counts K (the projection of the spin J onto a symmetry axis). 2) to extract the dipole electric and magnetic photon 10-4 strength function with better accuracy. target 10000 5000 Channe 0.6 0.000103 En (MeV

⁷⁶Lu – 1.56 e∖

SNS

En (MeV)

- 3)
- → The target nuclei ¹⁷⁵Lu and ¹⁷⁶Lu are very suitable due to large spin J of neutron resonances (J=3-4, J=13/2, 15/2, respectively).
- → It is necessary to increase number of neutron resonances under investigation in comparison with previous experiments. So far, E_v and I_v (176 Lu) for γ guanta have been measured from 15 neutron resonances in the range from 2.6 to 50.2 eV. We are planning to measure in the energy range of 1-100 eV.
- → The preliminary measurements were carried out in 2023 at the IREN resonance neutron source and at the CSNS neutron source (China). It is necessary to significantly increase the integral counting statistics in the energy range (5-7 MeV) of γ quanta. Therefore, the experiment is planned to continue in 2024.

²³²Th fission cross section measurement

- Back-n ES#1 ~φ18 mm beam size
- Double bunches mode ~100 kW
- FIXM(Fission chamber) measures the FFs (fission fragments)
- PRT(Proton recoil telescope) measures the recoiled proton as reference

A cross-sectional measurement of 232Th (n, f) was measured using two methods (two reference standards):

- Reference 1: ²³⁵U(n, f) [neutron energy range: 1-300 MeV]
- **Reference 2**: n-p scattering [neutron energy range : 10-70 MeV]

²³²Th (n,f) cross-section measurement results

Comparison of this work with other measurements

The article describes the procedure to measure 232Th(n,f) x.s. in the CSNS-Back-n facility, Reviewer #2: presenting some results and comparing it with previous results from other authors.

- It is a novel and very interesting work with high impact on the improvement of ND evaluated libraries, and nuclear fission applications.

The neutron energy in this work ranges up to 300 MeV, when previous experiments retrieved from EXFOR don't reach above 200 MeV. This is relevant for a better understanding of fission at intermediate energies.

April 15, 2024

4.

Summary/Conclusions

⁶ Li(n,t) ⁴ He reaction that presently exists at energies below 3 MeV.	and the second s
 Fluctuations in the scale of this measurement were observed at energies below 4 eV, and a large difference in the integrated cross section (3.54 vs. 3.18 b) near the peak of the resonance is puzzling since the agreement is mostly good elsewhere. 	
The extension of the analysis to higher energies clarified the structure of interfering 2/2 levels in the 4.6 May/ reason and removed a present of the structure of the str	ire

section (3.54 vs. 3.18 b) near the since the agreement is mostly go · The extension of the analysis to h of interfering 3/2⁻ levels in the 4-6 MeV range, and removed a prominent bump in the previous ⁶Li(n,t) evaluated cross section at ~ 6 MeV.

- A new ⁷Li R-matrix analysis, extended to 8 MeV incident neutron energy, forms the basis for a new evaluation of the n+6Li reactions. The data for most reactions are fit well, including the extensive new CSNS data set of Bai et al., which may be overall the most complete, and best-quality, set of relative differential cross sections for the

The results of standard cross-sectional measurements are highly valued by the International Atomic Energy Agency (IAEA): 1. ⁶Li(n, t) measurement

IAEA committee invitation

•

- 2. 235 U(n, f)/ 238 U(n, f)
- 3. ²³²Th (n, f) measurement

Fission relative cross-section measurement results were invited to participate in the 2022 IAFA Neutron Standard Data Conference and give an invited presentation

الوكالة الدولية للطاقة الذرية 回 际 原 子 能 机 构 International Atomic Energy Agency Agence Internationale de l'énergie atomique оолиов агентство по атомной энеог mo Internacional de Energia Atómica HE Mr Song LI Vienna International Centre, PO Box 100, 1400 Vienna, Austria Phone: (+43 1) 2600 • Fax: (+43 1) 26007 Resident Representative Email: Official.Mail@iaca.org • Internet: https://www.iaca.org Permanent Mission of the People's Republic of In reply please refer to: EVT2103015 China to the IAEA Dial directly to extension: (+43 1) 2600-21708/2171 Hohe Warte 3 1190 VIENNA

B Layou

Excellency

8

2023-06-19

(🕸) IAEA

I have the honour to inform you that the International Atomic Energy Agency (IAEA) will hold the Technical Meeting on Neutron Data Standards (hereinafter referred to as "event") at its Headquarters in Vienna, Austria, from 9 to 13 October 2023.

Invitation of the Oct2023 IAEA Technical Meeting on Neutron Data Standards

What can we do at Back-n?

the beam flux comparison between Back-n and n_TOF

Back-n has the most insensitive resonance neutron flux.

- Small reaction cross-section (mb-μb)
- Important targets, which are difficult to prepare or radioactive

In the next six years (CSNS II), the CSNS accelerator power will increase from 100 to 500 kW. The beam intensity of

Back-n will increase with a factor of $\mathbf{5}$.

Beamtime

We have almost 5000 hrs beamtime per year opening to every scientist in the world.

Joint funding projects

- The Chinese government is actively promoting joint funding projects for large scientific facilities with foreign countries.
- RSF-NSFC joint research project(deadline 26 April 2024)

RSF-NSFC Cooperation: 4th Call for Proposals

Source: RSF Press Office

To facilitate the support of collaborative work between Russian and Chinese research groups, the Russian Science Foundation (RSF) and the National Natural Science Foundation of China (NSFC) jointly announce their fourth call for proposals for bilateral Joint Research Projects for the funding period 2025-2027 in Mathematical and Physical Sciences, Earth Sciences, Information Sciences, Materials and Engineering sciences.

China-Egypt Government Joint Research Projects(deadline June 2024)
 Egyptian Contact: Science, Technology & Innovation Funding Authority (STDF), Dr. Amal Gomaa,
 Email: amal.gomaa@stdf.eg

Back-n user and community

There are a total of more than 200 people from different institutions, including:

- the Institute of High Energy Physics of the Chinese Academy of Sciences
- the China Institute of Atomic Energy
- the China Academy of Engineering Physics
- the Northwest Institute of Nuclear Technology
- the University of Science and Technology of China
- Peking University
- Xi'an Jiaotong University
- Indiana University
- JINR
- •

You are welcome mailto: *fanrr@ihep.ac.cn*

April 15, 2024