International Seminar on Interaction of Neutrons with Nuclei



### Dynamics model for the Neptune reactor

M.M. Podlesnyy\*, A.E. Verkhoglyadov\*\*, E.P. Shabalin, M.V. Rzjanin

Joint institute for Nuclear Research, Dubna, Russian Federation \*e-mail: podlesny@phystech.edu \*\*e-mail: verhoglyadov\_al@mail.ru

### The Neptune reactor

Parameters of reactor IBR-3 (NEPTUN)

| Parameter                                                                                                               | Value     |
|-------------------------------------------------------------------------------------------------------------------------|-----------|
| Average thermal power, MW                                                                                               | 15        |
| Pulse frequency, Hz                                                                                                     | 10        |
| Fuel / critical mass, kg                                                                                                | NpN/540   |
| Coolant temperature at inlet/outlet (Na liquid, °C)                                                                     | 290/390   |
| Effective fraction of delayed neutrons                                                                                  | 0.0013    |
| Prompt neutron generation time, ns                                                                                      | 9 - 30    |
| Effective duration of neutron pulse, µs                                                                                 | 200 - 240 |
| Background power, % of average power                                                                                    | 2.5-3     |
| Diameter of a fuel rod, mm                                                                                              | 17.3      |
| Height of a fuel column, mm                                                                                             | 410       |
| Fuel density, g/cm <sup>3</sup>                                                                                         | 13.4      |
| Average neutron heat flux on the surface<br>of the water moderator, 10 <sup>14</sup> cm <sup>-2</sup> · S <sup>-1</sup> | 10        |



Design of reactor IBR-3 (NEPTUN) 1- reactor core, 2 - empty sector of reactivity modulator, 3 - reactivity modulator with titanium hydride (blue), 4 - moderator, 5 - beryllium reflector.















#### Structure of the program Thermal elasticity $\rho_{o}$ Reactivity disturbance Settings MINAAAAA Automatic controller ₩\_-0.2 Boundary $\rho_{tr}$ conditions Thermal elasticity -0.3H ax Thermal expansion -0.4core max Method core avg edge max $\rho_{na}$ $-0.5_{0}$ 2 Coolant t, s Transverse deformation of a fuel rod in the case of a free edge. Max displacement of fuel pellets, — Average displacement of fuel pellets, *Max displacement of fuel rod cladding.* Sharm El Sheikh, 15/04/2024 ......





### Results



Transition to stochastic dynamics due to thermal expansion of fuel (dynamic bending and disturbances disabled)

Transition to stochastic dynamics due to dynamic bending.

9





International Seminar on Interaction of Neutrons with Nuclei



### Thanks for your attention!

M.M. Podlesnyy\*, A.E. Verkhoglyadov\*\*, E.P. Shabalin, M.V. Rzjanin

Joint institute for Nuclear Research, Dubna, Russian Federation \*e-mail: podlesny@phystech.edu \*\*e-mail: verhoglyadov\_al@mail.ru